Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(1): 135-151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37942831

RESUMO

In tandem with the expanding obesity pandemic, the prevalence of metabolic dysfunction associated steatohepatitis (MASH, formerly known as NASH)- driven hepatocellular carcinoma (HCC) is predicted to rise globally, creating a significant need for therapeutic interventions. We previously identified the upregulation of apoptosis antagonizing transcription factor (AATF), which is implicated in facilitating the progression from MASH to HCC. The objective of this study was to examine whether the intervention of curcumin could alleviate AATF-mediated MASH, inhibit tumor growth, and elucidate the underlying mechanism. A preclinical murine model mimicking human MASH-HCC was employed, subjecting mice to either a chow diet normal water (CDNW) or western diet sugar water (WDSW) along with very low dose of carbon tetrachloride (CCl4 - 0.2 µL/g, weekly). Mice receiving curcumin (CUR) alongside WDSW/CCl4 exhibited significant improvements, including reduced liver enzymes, dyslipidemia, steatosis, inflammation, and hepatocellular ballooning. Curcumin treatment also suppressed hepatic expression of inflammatory, fibrogenic, and oncogenic markers. Of note, there was a significant reduction in the expression of AATF upon curcumin treatment in WDSW/CCl4 mice and human HCC cells. In contrast, curcumin upregulated Kruppel-like factor 4 (KLF4) in MASH liver and HCC cells, which is known to downregulate sp1 (specificity protein-1) expression. Thus, curcumin treatment effectively inhibited the progression of MASH to HCC by downregulating the expression of AATF via the KLF4-Sp1 signaling pathway. These preclinical findings establish a novel molecular connection between curcumin and AATF in reducing hepatocarcinogenesis, and provide a strong rationale for the development of curcumin as a viable treatment for MASH-HCC in humans.


Assuntos
Carcinoma Hepatocelular , Curcumina , Fígado Gorduroso , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Apoptose , Proteínas Reguladoras de Apoptose , Carcinoma Hepatocelular/patologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Fígado Gorduroso/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Repressoras , Fatores de Transcrição
2.
J Fluoresc ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625575

RESUMO

Organic semiconductors find widespread applications in the realm of organic light-emitting diodes (OLEDs) as well as organic photovoltaic cells. In the domain of OLED devices, it is plausible for nano-based Mg metal complexes to play a role as electron and hole-transport layers. In the present investigation, we synthesized 2(2-methyl 8-hydroxyquinoline) magnesium [Mg(mq)2] nanorods through the employment of the precipitation method, using 2-methyl 8- hydroxyquinoline and magnesium acetate. We employed various techniques to characterize the Mg(mq)2 nanorods, including powder XRD, FTIR spectroscopy, SEM, EDX, UV-Vis, and PL spectroscopy studies. The structural aspects of Mg(mq)2 were ascertained through P-XRD analysis. The elemental composition of Mg(mq)2 and its surface texture were established via EDX and HR-SEM analyses. FTIR spectroscopy confirmed the existence of functional groups within the sample. UV-Vis spectroscopy was utilized to evaluate the optical absorbance, bandgap, and Urbach energy of Mg(mq)2. The luminescence properties of the Mg(mq)2 nanorods were determined from the photoluminescence study. The characterization results were compared with the Zn(mq)2 nano samples. The experimental results presented herein serve to demonstrate the practicality of employing Mg(mq)2 nanorods in OLED devices.

3.
Cereb Cortex ; 33(6): 3293-3310, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35834935

RESUMO

Understanding computational principles in hierarchically organized sensory systems requires functional parcellation of brain structures and their precise targeting for manipulations. Although brain atlases are widely used to infer area locations in the mouse neocortex, it has been unclear whether stereotaxic coordinates based on standardized brain morphology accurately represent functional domains in individual animals. Here, we used intrinsic signal imaging to evaluate the accuracy of area delineation in the atlas by mapping functionally-identified auditory cortices onto bregma-based stereotaxic coordinates. We found that auditory cortices in the brain atlas correlated poorly with the true complexity of functional area boundaries. Inter-animal variability in functional area locations predicted surprisingly high error rates in stereotaxic targeting with atlas coordinates. This variability was not simply attributed to brain sizes or suture irregularities but instead reflected differences in cortical geography across animals. Our data thus indicate that functional mapping in individual animals is essential for dissecting cortical area-specific roles with high precision.


Assuntos
Córtex Auditivo , Neocórtex , Camundongos , Animais , Imageamento Tridimensional , Encéfalo/anatomia & histologia , Mapeamento Encefálico/métodos , Córtex Auditivo/diagnóstico por imagem , Cabeça , Técnicas Estereotáxicas , Imageamento por Ressonância Magnética/métodos
4.
J Physiol ; 601(22): 4953-4971, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35708653

RESUMO

Extracellular vesicles (EVs) are nanoscopic packages that are heterogeneous and bona fide players in hepatic physiology and pathology as they are involved in intercellular communication. EVs carrying bioactive cargoes rich in lipids, proteins or nucleic acids are implicated in the onset and progression of liver diseases. Liver pathology using liver biopsy has been assessed for several intricate conditions such as viral hepatitis, alcoholic and non-alcoholic fatty liver disease, hepatic malignancies and drug-induced liver injury. The lacunae, however, lie in early diagnosis and timely treatment of the above conditions, underscoring the need for non-invasive, accurate diagnostic tools that could replace the gold standard method of tissue biopsy. In this regard, EVs have emerged as promising candidates that could serve as potential biomarkers. In the last two decades, EVs, owing to their multifaceted charm in bringing out cell-free therapeutic responses and the ability of their cargoes to be applied to novel biomarkers, have drawn the great attention of researchers with the advancement and clinical application of liquid biopsy. In this review, we recapitulate the role of EVs and provide insights into the promising role of these small packages as biomarkers in liver pathology.


Assuntos
Vesículas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Humanos , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Comunicação Celular
5.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834657

RESUMO

The pathophysiology of nonalcoholic steatohepatitis (NASH) is complex, owing to its diverse pathological drivers and, until recently, there were no approved drugs for this disease. Tecomella is a popular herbal medicine used to treat hepatosplenomegaly, hepatitis, and obesity. However, the potential role of Tecomella undulata in NASH has not yet been scientifically investigated. The administration of Tecomella undulata via oral gavage lowered body weight, insulin resistance, alanine transaminase (ALT), aspartate transaminase (AST), triglycerides, and total cholesterol in western diet sugar water (WDSW) fed mice but had no effect on chow diet normal water (CDNW) fed mice. Tecomella undulata improved steatosis, lobular inflammation, and hepatocyte ballooning and resolved NASH in WDSW mice. Furthermore, Tecomella undulata also alleviated the WDSW-induced Endoplasmic Reticulum stress and oxidative stress, enhanced antioxidant status, and thus reduced inflammation in the treated mice. Of note, these effects were comparable to saroglitazar, the approved drug used to treat human NASH and the positive control used in the study. Thus, our findings indicate the potential of Tecomella undulata to ameliorate WDSW-induced steatohepatitis, and these preclinical data provide a strong rationale for assessing Tecomella undulata for the treatment of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/patologia , Hepatomegalia , Obesidade/patologia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
6.
J Food Sci Technol ; 60(2): 441-452, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36712217

RESUMO

The coconut palm belongs to the Arecaceae family, which is distinct from other fruits, known for its versatility. Fresh coconut products are valuable for many food preparations owing to their nutritional and flavour properties. For example, tender coconut yields coconut water, a refreshing nutritious drink that provides good nutrients including electrolytes and other interesting compounds. The mature coconut meat which is rich in fat and protein, aids in coconut milk extraction and is a major component in the wet and dry process of oil extraction. Coconut milk has market potential owing to its increasing applications in food and beverage industries. Coconut is also known for its by-product namely coconut flour, which is rich in protein and dietary fiber, could be used in the preparation of functional foods. The different methods involved in the oil extraction process which helps in more efficient oil recovery were discussed briefly. The nutritional health-promoting functional role of coconut water and virgin coconut oil is highlighted in review paper.

7.
Hepatology ; 73(4): 1290-1306, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33131062

RESUMO

BACKGROUND AND AIMS: The mechanisms by which the I148M mutant variant of the patatin-like phospholipase domain-containing 3 (PNPLA3I148M ) drives development of nonalcoholic steatohepatitis (NASH) are not known. The aim of this study was to obtain insights on mechanisms underlying PNPLA3I148M -induced acceleration of NASH. APPROACH AND RESULTS: Hepatocyte-specific overexpression of empty vector (luciferase), human wild-type PNPLA3, or PNPLA3I148M was achieved using adeno-associated virus 8 in a diet-induced mouse model of nonalcoholic fatty liver disease followed by chow diet or high-fat Western diet with ad libitum administration of sugar in drinking water (WDSW) for 8 weeks. Under WDSW, PNPLA3I148M overexpression accelerated steatohepatitis with increased steatosis, inflammation ballooning, and fibrosis (P < 0.001 versus other groups for all). Silencing PNPLA3I148M after its initial overexpression abrogated these findings. PNPLA3I148M caused 22:6n3 docosahexanoic acid depletion and increased ceramides under WDSW in addition to increasing triglycerides and diglycerides, especially enriched with unsaturated fatty acids. It also increased oxidative stress and endoplasmic reticulum stress. Increased total ceramides was associated with signature of transducer and activator of transcription 3 (STAT3) activation with downstream activation of multiple immune-inflammatory pathways at a transcriptomic level by network analyses. Silencing PNPLA3I148M reversed STAT3 activation. Conditioned media from HepG2 cells overexpressing PNPLA3I148M increased procollagen mRNA expression in LX2 cells; this was abrogated by hepatocyte STAT3 inhibition. CONCLUSIONS: Under WDSW, PNPLA3I148M overexpression promotes steatosis and NASH by metabolic reprogramming characterized by increased triglycerides and diglycerides, n3 polyunsaturated fatty acid depletion, and increased ceramides with resultant STAT3 phosphorylation and downstream inflammatory pathway activation driving increased stellate cell fibrogenic activity.


Assuntos
Lipase , Cirrose Hepática , Proteínas de Membrana , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Células Hep G2 , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Humanos , Lipase/genética , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Polimorfismo Genético , Transcriptoma
8.
Chemphyschem ; 23(11): e202200057, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35285118

RESUMO

Humins are one of the undesirable products formed during the dehydration of sugars as well as the conversion of 5-hydroxymethylfurfural (HMF) to value-added products. Thus, reducing the formation of humins is an important strategy for improving the yield of the aforementioned reactions. Even after a plethora of studies, the mechanism of formation and the structure of humins are still elusive. In this regard, we have employed density functional theory-based mechanistic studies and microkinetic analysis to identify crucial intermediates formed from glucose, fructose, and HMF that can initiate the polymerization reactions resulting in humins under Brønsted acid-catalyzed reaction conditions. This study brings light into crucial elementary reaction steps that can be targeted for controlling humins formation. Moreover, this work provides a rationale for the experimentally observed aliphatic chains and HMF condensation products in the humins structure. Different possible polymerization routes that could contribute to the structure of humins are also suggested based on the results. Importantly, the findings of this work indicate that increasing the rate of isomerization of glucose to fructose and reducing the rate of reaction between HMF molecules could be an efficient strategy for reducing humins formation.


Assuntos
Celulose , Furaldeído , Catálise , Frutose/química , Furaldeído/química , Glucose/química
9.
Mol Biol Rep ; 49(4): 3357-3363, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35124794

RESUMO

BACKGROUND: Perna viridis (Linnaeus, 1758), the Asian green mussel, is native to the Asia-Pacific region. The species is extensively distributed in the Indian subcontinent and is a candidate species for aquaculture in the Southeast Asian region. Availability of genetic information on wild populations is essential for the effective conservation and management of Perna species. The present study assessed the genetic variation and population structure across the distribution range of this species from the Indian peninsula by using microsatellite markers to determine the genetic structuring among the species. METHODS: A total of 15 microsatellite loci with M13 labeling were used for the genetic characterization of P. viridis along Indian waters. Genotyped data were analyzed using analytical software to determine the genetic stocks and understand the genetic variability across the populations. RESULTS: We identified 15 polymorphic markers to understand the genetic stocks and variability across Perna populations. The mean value of the observed heterozygosity (Hobs: 0.741) for all populations was closer to the expected heterozygosity (Hexp: 0.75). The pairwise Fst values between the west and east coasts of India varied significantly, indicating the existence of significant genetic structure between the populations. CONCLUSIONS: Genetic stock identification using software analysis exhibited two distinct stocks, one along the west coast (Arabian Sea) and another along the east coast (Bay of Bengal). Bottleneck analysis indicated the genetic stability of species in the wild. P. viridis is a commercially vital species in Indian peninsular regions. The present study suggests the adoption of stock-specific relaying programs of the species from Indian waters in future studies.


Assuntos
Perna (Organismo) , Animais , Aquicultura , Variação Genética/genética , Genótipo , Índia , Repetições de Microssatélites/genética , Perna (Organismo)/genética
10.
J Contemp Dent Pract ; 23(5): 552-557, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35986466

RESUMO

AIM: The present study aimed at evaluating the efficacy of spirulina 500 mg in reducing the burning sensation and lesion size in oral lichen planus (OLP). MATERIALS AND METHODS: A total of 60 subjects who attended the oral medicine specialty clinic with histopathologically confirmed OLP and having symptoms of burning sensation were recruited for the study. They were randomly divided into two groups: group A (30) subjects were prescribed Spirulina 500 mg twice daily along with only a week application of topical triamcinolone acetonide 0.1% thrice daily; group B subjects were prescribed topical triamcinolone acetonide 0.1% alone thrice daily for 8 weeks. Both the groups were followed up posttreatment monthly for three consecutive months. RESULTS: Data were recorded, and statistical analysis by using ANOVA one-way test, and Chi-square test were performed, which showed statistically significant p-value (<0.005) for the parameters "burning sensation" and "size of the lesion". When compared between groups, group A showed a favorable outcome of the intervention. CONCLUSION: Spirulina 500 mg supplementation twice daily could be effective adjunct therapy with steroids to treat OLP. CLINICAL SIGNIFICANCE: This research allowed us to delve into spirulina as one of the treatment modalities for OLP. Further studies are needed as it is a rich source of proteins and vitamins and demonstrates potent anti-inflammatory, immunomodulatory, and antioxidant actions.


Assuntos
Líquen Plano Bucal , Spirulina , Administração Tópica , Glucocorticoides/uso terapêutico , Humanos , Líquen Plano Bucal/tratamento farmacológico , Triancinolona Acetonida/uso terapêutico
11.
J Cell Physiol ; 236(5): 3383-3395, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33145763

RESUMO

Apoptosis antagonizing transcription factor (AATF), an interacting partner of RNA polymerase II is a multifunctional protein that is highly conserved in eukaryotes. In addition to the regulation of gene expression as a transcriptional coactivator, AATF is shown to play a dual role in regulating the cell cycle by displacing histone deacetylases 1 (HDAC1) from the retinoblastoma-E2F transcription factor (Rb-E2F) complex and also from the specificity protein 1 (Sp1) transcription factor responsible for p21 expression, thereby ensuring cell proliferation and growth arrest, respectively, at different checkpoints of the cell cycle. Notably, AATF has emerged as one of the most important modulators of various cellular responses such as proliferation, apoptosis, and survival. Studies have demonstrated that AATF protects cells from multiple stress stimuli such as DNA damage, ER stress, hypoxia, or glucose deprivation by inducing cell cycle arrest, autophagy, or apoptosis inhibition. Furthermore, AATF serves as a critical regulator in various cancers and promotes tumorigenesis by protecting cancer cells from apoptosis induction, favoring cell proliferation, or promoting cell survival by autophagy. Recent studies have demonstrated the key role of AATF in ribosome biosynthesis and have also provided insights into the mechanistic role of AATF, offering impressive cytoprotection in myocardial infarction, neurologic diseases, and nephronophthisis. In this review, we will provide a comprehensive overview of the role of AATF and shed light on its emerging roles underlining the potential use of AATF as a novel biomarker and as an effective therapeutic target.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Fatores de Transcrição/metabolismo , Animais , Humanos , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia
12.
Hepatology ; 69(4): 1520-1534, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30394550

RESUMO

Hepatocellular carcinoma (HCC) is increasing as a cause of liver-related mortality largely because of the growing burden of nonalcoholic steatohepatitis (NASH). The mechanisms of HCC development in nonalcoholic fatty liver disease (NAFLD) are incompletely understood. We initially identified apoptosis antagonizing transcription factor (AATF) to be associated with HCC in a mouse model of NASH that develops HCC without the addition of specific carcinogens. AATF, also called che-1, is a transcriptional factor that is highly conserved among eukaryotes. AATF is known to be a central mediator of the cellular responses as it promotes cell proliferation and survival by inducing cell cycle arrest, autophagy, DNA repair, and inhibition of apoptosis. However, the role of AATF in NASH and HCC remains unknown. Here, we provide evidence for AATF as a contributory factor for HCC in NAFLD. AATF overexpression was further verified in human NASH and HCC and multiple human HCC cell lines. Tumor necrosis factor-α (TNFα), known to be increased in NASH, induced AATF expression. Promoter analysis of AATF revealed a sterol regulatory element binding transcription factor 1-c (SREBP-1c) binding site; inhibition of SREBP-1 by using specific inhibitors as well as small interfering RNA decreased TNFα-induced AATF expression. AATF interacted with signal transducer and activator of transcription 3 to increase monocyte chemoattractant protein-1 expression. AATF knockdown decreased cell proliferation, migration, invasion, colony formation, and anchorage-dependent growth in HCC cell lines. Xenograft of QGY-7703 HCC cells with AATF stably knocked down into nonobese diabetic scid gamma mice demonstrated reduced tumorigenesis and metastases. Conclusion: AATF drives NAFLD and hepatocarcinogenesis, offering a potential target for therapeutic intervention.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Repressoras/metabolismo , Animais , Carcinoma Hepatocelular/etiologia , Quimiocina CCL2/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/etiologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Fator de Transcrição STAT3/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
13.
Mol Biol Rep ; 47(7): 5061-5072, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32524388

RESUMO

Perna viridis (Linnaeus, 1758), the Asian green mussel, belonging to the family Mytilidae is widely distributed along the Indian coast. The species is majorly found in southeastern countries and is considered an ideal candidate for aquaculture due to its high nutritional value and growth rate. Obtaining their genetic information is essential for their sustainable capture-based production. In the present study, genetic variation, population structure, and demographic processes of the populations across the distribution of this species were assessed using the mitochondrial DNA ATPase6 and cytb gene. In total, we selected 170 samples from five localities across the Indian subcontinent including Andaman Sea. Sequence analysis of partial cytb (885 bp) and ATPase6 (714 bp) genes revealed 45 and 58 haplotypes, respectively. The significant coefficient of genetic differentiation (FST: 0.255 for cytb and 0.252 for ATPase6) and analyses of molecular variance indicated three varieties of stocks, namely Arabian Sea, Bay of Bengal, and Andaman Sea. All the populations showed low nucleotide diversity, suggesting severe historical bottleneck events and high haplotype diversity, indicating population expansion. The genetic variation and demographic process reported in this study will form the baseline information for framing policies, which can be adopted while planning stock specific ranching and relaying programmes in the Indian subcontinent with view to enhance and manage the fishery.


Assuntos
Perna (Organismo)/genética , Polimorfismo Genético , Animais , Citocromos b/genética , Ecossistema , Haplótipos , ATPases Mitocondriais Próton-Translocadoras/genética , Perna (Organismo)/fisiologia
14.
Mol Biol Rep ; 47(12): 10005-10014, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170425

RESUMO

Spanish mackerel S. commerson belonging to family Scombridae, represent a group of highly commercial marine fisheries with an ever-growing demand world over. Analysing the genetic diversity of this species is of utmost importance and necessary for conservation purposes. Microsatellites are molecular tools with advantages that are ideal for population analyses. This study provides the first multiplex panel set of species-specific microsatellite loci for S. commerson that can be applied when assessing both intra- and inter population genetic variation. Microsatellite marker panels were developed in S. commerson, using Third Generation Sequencing technology in PacBio RSII, based on Single-Molecule Real-Time (SMRT). Thirty- two microsatellite loci were isolated and characterized for S. commerson, by genotyping 20 individuals each obtained from the Kochi and Veraval in the Arabian sea and Chennai along Bay of Bengal coast (n = 3). The number of alleles per locus in S. commerson varied from 4 to 17, while the mean observed and expected heterozygosities ranged from 0.656 to 0.753. The Polymorphic Information Content (PIC) were highly informative, 85% loci with PIC value 0 > 0.75. This suite of markers provides the first species specific nuclear multiplex microsatellite marker panels (32 loci) for S. commerson and thus allows assessment of different populations structures of the species across its distribution range, with more specificity. These newly developed loci have also been validated for cross transferability in another scomberid fish Scomberomorus guttatus.


Assuntos
Conservação dos Recursos Naturais , Genética Populacional , Repetições de Microssatélites , Perciformes/genética , Animais , Heterozigoto , Oceano Índico , Polimorfismo Genético , Especificidade da Espécie
15.
Molecules ; 25(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272570

RESUMO

Titanium dioxide (TiO2) thin films were rapidly coated on Corning glass substrates from the precursor solution using the wire-bar technique at the room temperature and then post-annealed at 400, 500 and 600 °C for 1 h under atmospheric conditions. The structural, morphological, optical, wettability and photocatalytic properties of the films were studied. X-ray diffraction analysis confirmed the formation of an anatase TiO2 structure irrespective of the post-annealing temperatures. The optical transparency of the films in the visible range was measured to be > 70%. A water contact angle (WCA) of ~0° was observed for TiO2 thin-film, post-annealed at 400 °C and 500 °C. However, WCA of 40.3° was observed for post-annealed at 600 °C. The photocatalytic dye-degradation using post-annealed thin-film was investigated indicating a steady improvement in the dye-degradation percentage (from 24.3 to 29.4%) with the increase of post-annealing temperature. The demonstrated TiO2 thin-films deposited by wire-bar coating technique showed promises for the manufacturing of large-area cost-effective self-cleaning window glass.


Assuntos
Corantes/química , Titânio/química , Catálise , Vidro/química , Fotoquímica/métodos , Soluções/química , Temperatura , Molhabilidade , Difração de Raios X/métodos
16.
Hepatology ; 67(4): 1284-1302, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29083504

RESUMO

Intestinal dysbiosis is implicated in alcoholic hepatitis (AH). However, changes in the circulating microbiome, its association with the presence and severity of AH, and its functional relevance in AH is unknown. Qualitative and quantitative assessment of changes in the circulating microbiome were performed by sequencing bacterial DNA in subjects with moderate AH (MAH) (n = 18) or severe AH (SAH) (n = 19). These data were compared with heavy drinking controls (HDCs) without obvious liver disease (n = 19) and non-alcohol-consuming controls (NACs, n = 20). The data were related to endotoxin levels and markers of monocyte activation. Linear discriminant analysis effect size (LEfSe) analysis, inferred metagenomics, and predictive functional analysis using PICRUSt were performed. There was a significant increase in 16S copies/ng DNA both in MAH (P < 0.01) and SAH (P < 0.001) subjects. Compared with NACs, the relative abundance of phylum Bacteroidetes was significantly decreased in HDCs, MAH, and SAH (P < 0.001). In contrast, all alcohol-consuming groups had enrichment with Fusobacteria; this was greatest for HDCs and decreased progressively in MAH and SAH. Subjects with SAH had significantly higher endotoxemia (P = 0.01). Compared with alcohol-consuming groups, predictive functional metagenomics indicated an enrichment of bacteria with genes related to methanogenesis and denitrification. Furthermore, both HDCs and SAH showed activation of a type III secretion system that has been linked to gram-negative bacterial virulence. Metagenomics in SAH versus NACs predicted increased isoprenoid synthesis via mevalonate and anthranilate degradation, known modulators of gram-positive bacterial growth and biofilm production, respectively. CONCLUSION: Heavy alcohol consumption appears to be the primary driver of changes in the circulating microbiome associated with a shift in its inferred metabolic functions. (Hepatology 2018;67:1284-1302).


Assuntos
DNA Bacteriano/sangue , Hepatite Alcoólica/microbiologia , Hepatopatias Alcoólicas/microbiologia , Metagenômica/métodos , Microbiota/genética , Adulto , Consumo de Bebidas Alcoólicas/efeitos adversos , DNA Bacteriano/genética , Endotoxinas/sangue , Feminino , Humanos , Fígado/microbiologia , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/patologia
17.
Hepatology ; 67(2): 534-548, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28696585

RESUMO

The histologic spectrum of nonalcoholic fatty liver disease (NAFLD) includes fatty liver (NAFL) and steatohepatitis (NASH), which can progress to cirrhosis in up to 20% of NASH patients. Bile acids (BA) are linked to the pathogenesis and therapy of NASH. We (1) characterized the plasma BA profile in biopsy-proven NAFL and NASH and compared to controls and (2) related the plasma BA profile to liver histologic features, disease activity, and fibrosis. Liquid chromatography/mass spectrometry quantified BAs. Descriptive statistics, paired and multiple group comparisons, and regression analyses were performed. Of 86 patients (24 controls, 25 NAFL, and 37 NASH; mean age 51.8 years and body mass index 31.9 kg/m2 ), 66% were women. Increased total primary BAs and decreased secondary BAs (both P < 0.05) characterized NASH. Total conjugated primary BAs were significantly higher in NASH versus NAFL (P = 0.047) and versus controls (P < 0.0001). NASH had higher conjugated to unconjugated chenodeoxycholate (P = 0.04), cholate (P = 0.0004), and total primary BAs (P < 0.0001). The total cholate to chenodeoxycholate ratio was significantly higher in NAFLD without (P = 0.005) and with (P = 0.02) diabetes. Increased key BAs were associated with higher grades of steatosis (taurocholate), lobular (glycocholate) and portal inflammation (taurolithocholate), and hepatocyte ballooning (taurocholate). Conjugated cholate and taurocholate directly and secondary to primary BA ratio inversely correlated to NAFLD activity score. A higher ratio of total secondary to primary BA decreased (odds ratio, 0.57; P = 0.004) and higher conjugated cholate increased the likelihood of significant fibrosis (F≥2) (P = 0.007). Conclusion: NAFLD is associated with significantly altered circulating BA composition, likely unaffected by type 2 diabetes, and correlated with histological features of NASH; these observations provide the foundation for future hypothesis-driven studies of specific effects of BAs on specific aspects of NASH. (Hepatology 2018;67:534-548).


Assuntos
Ácidos e Sais Biliares/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Cirrose Hepática/sangue , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Receptores Citoplasmáticos e Nucleares/fisiologia , Índice de Gravidade de Doença
18.
Org Biomol Chem ; 17(32): 7497-7506, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31365007

RESUMO

The nature and coordination sites of the Schiff base 3,3'-(1E,1'E)-(1,3-phenylenebis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)dinaphthalen-2-ol (APHN) were tuned by its selective reduction to design a highly efficient fluorescent probe, 3,3'-(pyridine-2,6-diylbis(azanediyl))bis(methylene)dinaphthalen-2-ol (RAPHN). The structures of APHN, RAPHN, and the RAPHN-Fe3+ complex were satisfactorily modeled from the results of density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. RAPHN worked in pure aqueous medium as a turn on-off-on probe of Fe3+ and F-. The fluorescence nature of the probe in the presence and absence of Fe3+/F- was regulated by a set of mechanisms including -CH[double bond, length as m-dash]N isomerization and LMCT. A 2 : 1 (M : L) binding stoichiometry was established from a fluorescence Job's plot and further substantiated from HR-MS studies. The limits of detection of RAPHN for Fe3+ and RAPHN-Fe3+ for F- were found to be 2.49 × 10-7 M and 1.09 × 10-7 M, respectively. The RAPHN probe caused no cytotoxicity in gut tissue of Drosophila even at high concentrations. The probe displayed excellent bioimaging applications for detection of Fe3+ and F- in gut tissue of Drosophila. A combinatorial logic gate was constructed for the proper understanding of the working principle of RAPHN.


Assuntos
Complexos de Coordenação/química , Corantes Fluorescentes/química , Íons/análise , Bases de Schiff/química , Animais , Técnicas Biossensoriais , Linhagem Celular , Teoria da Densidade Funcional , Drosophila , Intestinos/citologia , Cinética , Ligantes , Modelos Moleculares , Naftalenos/química , Espectrometria de Fluorescência
19.
Luminescence ; 34(1): 39-47, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30450756

RESUMO

This paper discusses multi-spectroscopic and molecular docking analysis of the interaction between atenolol (ATN) and deoxyribose nucleic acid (DNA) using alizarin (ALZ) as a spectroscopic probe. ATN is a ß1 -receptor antagonist belonging to the ß-blocker class of molecules. Experimental findings that were based on different spectroscopic analysis, melting studies, viscometric analysis, 1 H nuclear magnetic resonance and circular dichroism studies revealed the presence of a grove-binding mode. The effect of ionic strength was also studied, and observations suggested that electrostatic interaction also played a minor role during interaction. Molecular docking analysis suggested that the dominant force for the grove-binding phenomenon was hydrogen bonding between the 24-H residue of ATN and O of the 10-G residue, and the 40-H residue of ATN and N of the 17-A base residue. Competitive binding study of the ALZ-DNA complex with ATN showed that, despite an increase in the amount of ATN in the ALZ-DNA complex, the overall absorbance remained unchanged. The decrease in fluorescence in the ALZ-DNA system may be due to new non-fluorescent ATN-DNA-ALZ complex formation.


Assuntos
Atenolol/química , DNA/química , Antagonistas de Receptores Adrenérgicos beta 1/química , Antagonistas de Receptores Adrenérgicos beta 1/metabolismo , Antraquinonas/química , Atenolol/metabolismo , Ligação Competitiva , Dicroísmo Circular , DNA/metabolismo , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Concentração Osmolar , Cloreto de Sódio/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Eletricidade Estática , Viscosidade
20.
J Hepatol ; 68(2): 230-237, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29128391

RESUMO

Non-alcoholic fatty liver disease (NAFLD) can manifest as non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis (NASH). NASH is often associated with progressive fibrosis which can lead to cirrhosis and hepatocellular carcinoma (HCC). NASH is increasing as an aetiology for end-stage liver disease as well as HCC. There are currently no approved therapies for NASH. A major barrier to development of therapeutics for NASH is the lack of preclinical models of disease that are appropriately validated to represent the biology and outcomes of human disease. Many in vitro and animal models have been developed. In vitro models do not fully capture the hepatic and extrahepatic milieu of human NASH and large animal models are expensive and logistically difficult to use. Therefore, there is considerable interest in the development and validation of mouse models for NAFLD, including NASH. Several models based on varying genetic or dietary manipulations have been developed. However, the majority do not recreate steatohepatitis, strictly defined as the presence of hepatocellular ballooning with or without Mallory-Denk bodies, accompanied by inflammation in the presence of macrovesicular steatosis. Others lack validation against human disease. Herein, we describe the best practices in development of mouse models of NASH. We further review existing models and the literature supporting their use as a surrogate for human disease. Finally, data on models to evaluate protective genes are discussed. It is hoped that this review will provide guidance for the interpretation of data derived from mouse models and also for the development and validation of newer models.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Hepatopatia Gordurosa não Alcoólica/terapia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA