Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 172: 105767, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36096457

RESUMO

The emergence of highly virulent multidrug-resistant P. aeruginosa has become increasingly evident among hospital-acquired infections and has raised the need for alternative therapies. Phage therapy can be one such alternative to antibiotic therapy to combat multidrug-resistant pathogenic bacteria, but this requires the availability of phages with a broad host range. In this study, isolation and molecular characterisation of P. aeruginosa specific phages were carried out. A total of 17 phages isolated showed different spectra of activity and efficiency of lysis against 82 isolates of P. aeruginosa obtained from clinical samples (n = 13), hospital effluent (n = 46) and fish processing plant effluent (n = 23). Antibiotic susceptibility test results revealed multi-drug resistance in 61 of the total 82 isolates. Three new jumbo lytic P. aeruginosa specific broad host range phages were isolated and characterised in this present study belonged to the family Myoviridae (order Caudovirales). The genetic analysis of ɸU5 revealed that phage has a genome size of 282.6 kbp with 373 putative open reading frames (ORFs), and its genetic architecture is similar to phiKZ like jumbo phages infecting P. aeruginosa. The bacteriophages isolated in this study had lytic ability against biofilm-forming and multidrug-resistant P. aeruginosa and could be candidates for further studies towards phage therapy.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Pseudomonas aeruginosa/genética , Fagos de Pseudomonas/genética , Bacteriófagos/genética , Genoma Viral , Antibacterianos/farmacologia
2.
Future Oncol ; 18(13): 1609-1626, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35137604

RESUMO

Effective cancer treatment is an urgent need due to the rising incidence of cancer. One of the most promising future strategies in cancer treatment is using microorganisms as cancer indicators, prophylactic agents, immune activators, vaccines or vectors in antitumor therapy. The success of bacteria-mediated chemotherapy will be dependent on the balance of therapeutic benefit and the control of bacterial infection in the body. Additionally, protozoans and viruses have the potential to be used in cancer therapy. This review summarizes how these microorganisms interact with tumor microenvironments and the challenges of a 'bugs as drugs' approach in cancer therapy. Several standpoints are discussed, such as bacteria as vectors for gene therapy that shuttle therapeutic compounds into tumor tissues, their intrinsic antitumor activities and their combination with chemotherapy or radiotherapy. Bug-based cancer therapy is a two-edged sword and we need to find the opportunities by overcoming the challenges.


Microbe-based cancer treatment strives to address urgent healthcare needs in patients experiencing difficult-to-treat cancers by using tumor-specific infectious microbes. Due to the ease of microbial culturing, microbes can be self-regenerating cancer therapeutics. Despite the fact that bacteria are usually believed to be the primary cause of cancer, the scientific literature has revealed exciting data indicating that bacteria might be efficient cancer prophylactic and therapeutic agents and ideal carriers for targeted cancer therapy. Advanced molecular engineering has recently been applied to bacterial therapy, resulting in increased efficacy with fewer adverse effects.


Assuntos
Neoplasias , Bactérias , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
3.
Protein Pept Lett ; 27(2): 120-134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31553285

RESUMO

In this era of multi-drug resistance (MDR), antimicrobial peptides (AMPs) are one of the most promising classes of potential drug candidates to combat communicable as well as noncommunicable diseases such as cancers and diabetes. AMPs show a wide spectrum of biological activities which include antiviral, antifungal, anti-mitogenic, anticancer, and anti-inflammatory properties. Apart from these prospective therapeutic potentials, the AMPs can act as food preservatives and immune modulators. Therefore, AMPs have the potential to replace conventional drugs and may gain a significant global drug market share. Although several AMPs have shown therapeutic potential in vitro or in vivo, in most cases they have failed the clinical trial owing to various issues. In this review, we discuss in brief (i) molecular mechanisms of AMPs in various diseases, (ii) importance of AMPs in pharmaceutical industries, (iii) the challenges in using AMPs as therapeutics and how to overcome, (iv) available AMP therapeutics in market, and (v) AMPs under clinical trials. Here, we specifically focus on the therapeutic AMPs in the areas of dermatology, surgery, oncology and metabolic diseases.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antimitóticos/farmacologia , Antimitóticos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Desenvolvimento de Medicamentos , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/uso terapêutico , Humanos
4.
Water Environ Res ; 92(4): 562-568, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31560139

RESUMO

New Delhi metallo-ß-lactamase-1 (NDM-1) is a novel type of metallo-ß-lactamase (MBL) associated with Enterobacteriaceae constitutes an important growing public health threat. The present study aims to characterize the NDM-1 producing Gram-negative bacteria (GNB) from the effluents of two tertiary care hospitals in Mangalore, South India and to profile their antibiotic resistance pattern. A total of 134 GNB were isolated from 30 hospital wastewater samples (treated and untreated) and analyzed. High-level resistance among untreated effluent sample was found toward nalidixic acid (74.52%), followed by cefotaxime (72.64%) and ampicillin (66.03%). Among the treated effluent isolates, the high resistance was found toward ampicillin (85.71%) followed by cefotaxime (85.71%) and piperacillin-tazobactam (53.57%). From untreated effluent isolates, 9 were NDM-1 positive by PCR; no isolates from treated effluent samples harbored blaNDM-1 . Untreated hospital wastewater is found to be important reservoirs of antibiotic-resistant bacteria carrying blaNDM-1 , and the presence of such bacteria in the effluents is a matter of great concern because they can contribute the antibiotic resistance to the natural environment. However, the absence of NDM in treated effluents emphasizes the importance of effluent treatment in reducing the dissemination of antibiotic-resistant bacteria. PRACTITIONER POINTS: Hospital wastewater is the important reservoir of antibiotic-resistant bacteria especially metallo-ß-lactamase producers (NDM-1). Wastewater treatment procedures in hospitals reduce the NDM isolates in the treated effluent. Thereby reduces the risk of resistance spread in the environment.


Assuntos
Enterobacteriaceae , Águas Residuárias , Antibacterianos , Bactérias , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA