Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Annu Rev Biochem ; 89: 717-739, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569519

RESUMO

In all human cells, human leukocyte antigen (HLA) class I glycoproteins assemble with a peptide and take it to the cell surface for surveillance by lymphocytes. These include natural killer (NK) cells and γδ T cells of innate immunity and αß T cells of adaptive immunity. In healthy cells, the presented peptides derive from human proteins, to which lymphocytes are tolerant. In pathogen-infected cells, HLA class I expression is perturbed. Reduced HLA class I expression is detected by KIR and CD94:NKG2A receptors of NK cells. Almost any change in peptide presentation can be detected by αß CD8+ T cells. In responding to extracellular pathogens, HLA class II glycoproteins, expressed by specialized antigen-presenting cells, present peptides to αß CD4+ T cells. In comparison to the families of major histocompatibility complex (MHC) class I, MHC class II and αß T cell receptors, the antigenic specificity of the γδ T cell receptors is incompletely understood.


Assuntos
Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe I/química , Imunidade Celular , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T gama-delta/química , Receptores KIR/química , Apresentação de Antígeno , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Evolução Molecular , Regulação da Expressão Gênica , Haplótipos , Antígenos de Histocompatibilidade Classe I/classificação , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/classificação , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunidade Inata , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Modelos Moleculares , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores KIR/classificação , Receptores KIR/genética , Receptores KIR/imunologia , Transdução de Sinais
2.
Immunogenetics ; 74(6): 513-525, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35562487

RESUMO

Leukocyte immunoglobulin-like receptor B1 (LILRB1) is widely expressed on various immune cells and the engagement of LILRB1 to HLA class I and pathogen-derived proteins can modulate the immune response. In the current study, 108 LILRB1 alleles were identified by screening the LILRB1 locus from the 1000 Genomes Phase 3 database. Forty-six alleles that occurred in three or more individuals encode 28 LILRB1 allotypes, and the inferred LILRB1 allotypes were then grouped into 9 LILRB1 D1-D2 variants for further analysis. We found that variants 1, 2, and 3 represent the three most frequent LILRB1 D1-D2 variants and the nine variants show frequency differences in populations. The binding assay demonstrated that variant 1 bound to HLA class I with the highest avidity, and all tested LILRB1 D1-D2 variants bound to HLA-C with lower avidity than to HLA-A and -B. Locus-specific polymorphisms at positions 183, 189, and 268 in HLA class I and dimorphisms in HLA-A (positions 207 and 253) and in HLA-B (position 194) affect their binding to LILRB1. Notably, the electrostatic interaction plays a critical role in the binding of LILRB1 to HLA class I as revealed by electrostatic analysis and by comparison of different binding avidities caused by polymorphisms at positions 72 and 103 of LILRB1. In this paper, we present a comprehensive study of the population genetics and binding abilities of LILRB1. The data will help us better understand the LILRB1-related diversity of the immune system and lay a foundation for functional studies.


Assuntos
Antígenos CD , Receptores Imunológicos , Humanos , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/genética , Receptores Imunológicos/genética , Alelos , Antígenos HLA-A
3.
J Immunol ; 191(9): 4778-88, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24078689

RESUMO

The interactions of killer Ig-like receptor 2D (KIR2D) with HLA-C ligands contribute to functional NK cell education and regulate NK cell functions. Although simple alloreactive rules have been established for inhibitory KIR2DL, those governing activating KIR2DS function are still undefined, and those governing the formation of the KIR2D repertoire are still debated. In this study, we investigated the specificity of KIR2DL1/2/3 and KIR2DS1/2, dissected each KIR2D function, and assessed the impact of revisited specificities on the KIR2D NK cell repertoire formation from a large cohort of 159 KIR and HLA genotyped individuals. We report that KIR2DL2(+) and KIR2DL3(+) NK cells reacted similarly against HLA-C(+) target cells, irrespective of C1 or C2 allele expression. In contrast, KIR2DL1(+) NK cells specifically reacted against C2 alleles, suggesting a larger spectrum of HLA-C recognition by KIR2DL2 and KIR2DL3 than KIR2DL1. KIR2DS2(+) KIR2DL2(-) NK cell clones were C1-reactive irrespective of their HLA-C environment. However, when KIR2DS2 and KIR2DL2 were coexpressed, NK cell inhibition via KIR2DL2 overrode NK cell activation via KIR2DS2. In contrast, KIR2DL1 and KIR2DS2 had an additive enhancing effect on NK cell responses against C1C1 target cells. KIR2DL2/3/S2 NK cells predominated within the KIR repertoire in KIR2DL2/S2(+) individuals. In contrast, the KIR2DL1/S1 NK cell compartment is dominant in C2C2 KIR2DL2/S2(-) individuals. Moreover, our results suggest that together with KIR2DL2, activating KIR2DS1 and KIR2DS2 expression limits KIR2DL1 acquisition on NK cells. Altogether, our results suggest that the NK cell repertoire is remolded by the activating and inhibitory KIR2D and their cognate ligands.


Assuntos
Antígenos HLA-C/imunologia , Células Matadoras Naturais/imunologia , Receptores KIR/imunologia , Alelos , Células Cultivadas , Genótipo , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Receptores KIR2DL1/imunologia , Receptores KIR2DL2/imunologia , Receptores KIR2DL3/imunologia
4.
J Immunol ; 191(5): 2708-16, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23918974

RESUMO

CMV infection represents a major complication in hematopoietic stem cell transplantation, which compromises graft outcome. Downregulation of HLA class I expression is one mechanism by which CMV evades T cell-mediated immune detection, rendering infected cells vulnerable to killer cell Ig-like receptor (KIR)(+) NK cells. In this study, we observed that the amplified NKG2C(+) NK cell population observed specifically in CMV seropositive individuals mainly expressed KIR2DL receptors. We have shown that HLA class I expression was downregulated on CMV-infected immature dendritic cells (iDCs), which escape to HLA-A2-pp65-specific T lymphocytes but strongly trigger the degranulation of KIR2D(+) NK cells. CMV infection conferred a vulnerability of C2C2(+) iDCs to educated KIR2DL1(+) and KIR2DL3(+) NK cell subsets. Alloreactivity of KIR2DL1(+) NK cell subsets against C1C1(+) iDCs was maintained independently of CMV infection. Unexpectedly, CMV-infected C1C1(+) iDCs did not activate KIR2DL3(+) NK cell reactivity, suggesting a potential CMV evasion to KIR2DL3 NK cell recognition. Altogether, the coexpression of KIR and NKG2C on expanded NK cell subsets could be related to a functional contribution of KIR in CMV infection and should be investigated in hematopoietic stem cell transplantation, in which the beneficial impact of CMV infection has been reported on the graft-versus-leukemia effect.


Assuntos
Infecções por Citomegalovirus/imunologia , Células Dendríticas/virologia , Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores KIR/biossíntese , Infecções por Citomegalovirus/metabolismo , Células Dendríticas/imunologia , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores KIR/imunologia , Receptores KIR2DL1/biossíntese , Receptores KIR2DL1/imunologia , Receptores KIR2DL3/biossíntese , Receptores KIR2DL3/imunologia
5.
Eur J Immunol ; 43(4): 1085-98, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23436464

RESUMO

NK-cell functions are regulated by many activating and inhibitory receptors including KIR3DL1. Extensive allelic polymorphism and variability in expression can directly alter NK-cell phenotype and functions. Here we investigated the KIR3DL1(+) NK-cell repertoire, taking into account the allelic KIR3DL1/S1 polymorphism, KIR3DL1 phenotype, and function. All 109 studied individuals possessed at least one KIR3DL1 allele, with weak KIR3DL1*054, or null alleles being frequently present. In KIR3DL1(high/null) individuals, we observed a bimodal distribution of KIR3DL1(+) NK cells identified by a different KIR3DL1 expression level and cell frequency regardless of a similar amount of both KIR3DL1 transcripts, HLA background, or KIR2D expression. However, this bimodal distribution can be explained by a functional selection following a hierarchy of KIR3DL1 receptors. The higher expression of KIR3DL1 observed on cord blood NK cells suggests the expression of the functional KIR3DL1*004 receptors. Thus, the low amplification of KIR3DL1(high) , KIR3DL1*004 NK-cell subsets during development may be due to extensive signaling via these two receptors. Albeit in a nonexclusive manner, individual immunological experience may contribute to shaping the KIR3DL1 NK-cell repertoire. Together, this study provides new insight into the mechanisms regulating the KIR3DL1 NK-cell repertoire.


Assuntos
Alelos , Células Matadoras Naturais/metabolismo , Receptores KIR3DL1/genética , Receptores KIR3DS1/genética , População Branca/genética , França , Frequência do Gene , Humanos , Células Matadoras Naturais/imunologia , Fenótipo
6.
Front Immunol ; 13: 992723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211403

RESUMO

Human NK cells are usually defined as CD3-CD56+ lymphocytes. However, a CD56-CD16+ (CD56neg) lymphocyte population that displays NK-associated markers expands during chronic viral infections such as HIV-1 and HCV, and, to lesser extent, in herpesvirus infections. This CD56neg NK cell subset has been understudied because it requires the exclusion of other lymphocytes to accurately identify its presence. Many questions remain regarding the origin, development, phenotype, and function of the CD56neg NK cell population. Our objective was to determine the frequency of this NK subset in healthy controls and its alteration in viral infections by performing a meta-analysis. In addition to this, we analyzed deposited CyTOF and scRNAseq datasets to define the phenotype and subsets of the CD56neg NK cell population, as well as their functional variation. We found in 757 individuals, from a combined 28 studies and 6 datasets, that the CD56neg subset constitutes 5.67% of NK cells in healthy peripheral blood, while HIV-1 infection increases this population by a mean difference of 10.69%. Meta-analysis of surface marker expression between NK subsets showed no evidence of increased exhaustion or decreased proliferation within the CD56neg subset. CD56neg NK cells have a distinctive pattern of KIR expression, implying they have a unique potential for KIR-mediated education. A perforin-CD94-NKG2C-NKp30- CD56neg population exhibited different gene expression and degranulation responses against K562 cells compared to other CD56neg cells. This analysis distinguishes two functionally distinct subsets of CD56neg NK cells. They are phenotypically diverse and have differing capacity for education by HLA class-I interactions with KIRs.


Assuntos
Infecções por HIV , HIV-1 , Antígeno CD56/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Perforina/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo
7.
Cancer Immunol Res ; 10(5): 558-570, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263761

RESUMO

γδ T cells stimulated by phosphoantigens (pAg) are potent effectors that secrete Th1 cytokines and kill tumor cells. Consequently, they are considered candidates for use in cancer immunotherapy. However, they have proven only moderately effective in several clinical trials. We studied the consequences of pAg-stimulated γδ T-cell interactions with natural killer (NK) cells and CD8+ T cells, major innate and adaptive effectors, respectively. We found that pAg-stimulated γδ T cells suppressed NK-cell responses to "missing-self" but had no effect on antigen-specific CD8+ T-cell responses. Extensive analysis of the secreted cytokines showed that pAg-stimulated γδ T cells had a proinflammatory profile. CMV-pp65-specific CD8+ T cells primed with pAg-stimulated γδ T cells showed little effect on responses to pp65-loaded target cells. By contrast, NK cells primed similarly with γδ T cells had impaired capacity to degranulate and produce IFNγ in response to HLA class I-deficient targets. This effect depended on BTN3A1 and required direct contact between NK cells and γδ T cells. γδ T-cell priming of NK cells also led to a downregulation of NKG2D and NKp44 on NK cells. Every NK-cell subset was affected by γδ T cell-mediated immunosuppression, but the strongest effect was on KIR+NKG2A- NK cells. We therefore report a previously unknown function for γδ T cells, as brakes of NK-cell responses to "missing-self." This provides a new perspective for optimizing the use of γδ T cells in cancer immunotherapy and for assessing their role in immune responses to pAg-producing pathogens. See related Spotlight by Kabelitz, p. 543.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Antígenos CD , Butirofilinas , Citocinas , Humanos , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T Citotóxicos/imunologia
8.
Sci Rep ; 11(1): 15782, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349169

RESUMO

KIR are mainly expressed on NK cells and to a lesser extent on T lymphocytes. Although the KIR NK cell repertoire was well explored in haploidentical Hematopoietic Stem Cell Transplantation (HSCT), KIR T cell compartment remains to be investigated in this context. In this study, the investigation of NK receptors on T lymphocytes during immune reconstitution after T-cell-replete haploidentical HSCT with Post-Transplant Cyclophosphamide (PTCy) has shown a significant increase of KIR2DL2/3+ T cell frequency at day 25. This was especially observed at day 30 in recipients who relapsed. IL-15 but not IL-12 increased in vitro KIR+ T cell expansion suggesting that the raised IL-15 serum concentration observed after PTCy in haploidentical HSCT might increase KIR+ T cell frequency. Moreover, investigations from healthy blood donors showed a higher inhibiting effect of KIR2DL3 on CMV specific T cell response against allogeneic than autologous C1+ target cells. The association of KIR+ T cell subset with relapse may suggest that inhibitory KIR2DL2/3 limit anti-leukemic effect of specific T lymphocytes at this early step of immune reconstitution. Further phenotypic and mechanistic investigations on this cell subset from a broader cohort of HSCT recipients should clarify its potential implication in relapse occurrence. Our results demonstrate that KIR-HLA interactions known to modulate NK cell functions also modulate T cell immune responses in the context of allogeneic HSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Receptores KIR2DL3 , Receptores KIR , Linfócitos T/imunologia , Transplante Haploidêntico , Ciclofosfamida/farmacologia , Humanos , Interleucina-15 , Células Matadoras Naturais/imunologia , Recidiva
9.
Blood Adv ; 4(7): 1198-1205, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32211881

RESUMO

Humans form 2 groups based on their innate immunity to Epstein-Barr virus (EBV). Group 1 makes a strong natural killer (NK)-cell and γδ T-cell response, whereas group 2 makes a strong NK-cell response, but a weak γδ T-cell response. To investigate the underlying basis for this difference in γδ T-cell immunity to EBV, we used next-generation sequencing to compare the γδ T-cell receptor (TCR) repertoires of groups 1 and 2. In the absence of EBV, group 1 TCRγ chains are enriched for complementarity determining region 3 (CDR3s) containing JγP, whereas group 2 TCRγ chains are enriched for CDR3s containing Jγ2. In group 1 donors, EBV activates many γδ T cells expressing Vγ9JγP, inducing proliferation that produces a large population of activated effector cells. The TCRs using Vγ9JγP are closely related to the TCRs of γδ T cells that respond to phosphoantigens. In group 2 donors, EBV activates a small subpopulation of γδ T cells, most expressing Vγ9JγP. In conclusion, we find that differences in the TCRγ-chain repertoire underlie the differential response of group 1 and group 2 to EBV.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/genética , Caracteres Sexuais , Linfócitos T
10.
Life Sci Alliance ; 2(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31723004

RESUMO

During development, NK cells are "educated" to respond aggressively to cells with low surface expression of HLA class I, a hallmark of malignant and infected cells. The mechanism of education involves interactions between inhibitory killer immunoglobulin-like receptors (KIRs) and specific HLA epitopes, but the details of this process are unknown. Because of the genetic diversity of HLA class I genes, most people have NK cells that are incompletely educated, representing an untapped source of human immunity. We demonstrate how mature peripheral KIR3DL1+ human NK cells can be educated in vitro. To accomplish this, we trained NK cells expressing the inhibitory KIR3DL1 receptor by co-culturing them with target cells that expressed its ligand, Bw4+HLA-B. After this training, KIR3DL1+ NK cells increased their inflammatory and lytic responses toward target cells lacking Bw4+HLA-B, as though they had been educated in vivo. By varying the conditions of this basic protocol, we provide mechanistic and translational insights into the process NK cell education.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores KIR3DL1/metabolismo , Diferenciação Celular/fisiologia , Epitopos/imunologia , Epitopos/metabolismo , Genes MHC Classe I , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Humanos , Ligantes , Receptores KIR/genética , Receptores KIR3DL1/imunologia
11.
J Exp Med ; 214(6): 1827-1841, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28468758

RESUMO

Most humans become infected with Epstein-Barr virus (EBV), which then persists for life. Infrequently, EBV infection causes infectious mononucleosis (IM) or Burkitt lymphoma (BL). Type I EBV infection, particularly type I BL, stimulates strong responses of innate immune cells. Humans respond to EBV in two alternative ways. Of 24 individuals studied, 13 made strong NK and γδ T cell responses, whereas 11 made feeble γδ T cell responses but stronger NK cell responses. The difference does not correlate with sex, HLA type, or previous exposure to EBV or cytomegalovirus. Cohorts of EBV+ children and pediatric IM patients include both group 1 individuals, with high numbers of γδ T cells, and group 2 individuals, with low numbers. The even balance of groups 1 and 2 in the human population points to both forms of innate immune response to EBV having benefit for human survival. Correlating these distinctive responses with the progress of EBV infection might facilitate the management of EBV-mediated disease.


Assuntos
Herpesvirus Humano 4/imunologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Adulto , Antígenos CD/metabolismo , Linfócitos B/imunologia , Linfócitos B/virologia , Butirofilinas/metabolismo , Diferenciação Celular/imunologia , Proliferação de Células , Citomegalovirus/fisiologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Genótipo , Antígenos HLA/imunologia , Humanos , Ativação Linfocitária/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fenótipo , Doadores de Tecidos
12.
Cell Rep ; 19(7): 1394-1405, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514659

RESUMO

HLA-B∗46:01 was formed by an intergenic mini-conversion, between HLA-B∗15:01 and HLA-C∗01:02, in Southeast Asia during the last 50,000 years, and it has since become the most common HLA-B allele in the region. A functional effect of the mini-conversion was introduction of the C1 epitope into HLA-B∗46:01, making it an exceptional HLA-B allotype that is recognized by the C1-specific natural killer (NK) cell receptor KIR2DL3. High-resolution mass spectrometry showed that HLA-B∗46:01 has a low-diversity peptidome that is distinct from those of its parents. A minority (21%) of HLA-B∗46:01 peptides, with common C-terminal characteristics, form ligands for KIR2DL3. The HLA-B∗46:01 peptidome is predicted to be enriched for peptide antigens derived from Mycobacterium leprae. Overall, the results indicate that the distinctive peptidome and functions of HLA-B∗46:01 provide carriers with resistance to leprosy, which drove its rapid rise in frequency in Southeast Asia.


Assuntos
Antígenos HLA-B/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Receptores KIR2DL3/metabolismo , Motivos de Aminoácidos , Citotoxicidade Imunológica , Antígenos HLA-B/química , Antígenos HLA-C , Humanos , Células Matadoras Naturais/imunologia , Ligantes , Modelos Biológicos , Ligação Proteica , Recombinação Genética/genética
13.
Sci Immunol ; 1(3)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27868107

RESUMO

Natural killer (NK) cells are lymphocytes having vital functions in innate and adaptive immunity, as well as placental reproduction. Controlling education and functional activity of human NK cells are various receptors that recognize HLA class I on the surface of tissue cells. Epitopes of polymorphic HLA-A,-B and -C are recognized by equally diverse killer cell immunoglobulin-like receptors (KIR). In addition, a peptide cleaved from the leader sequence of HLA-A,-B or -C must bind to HLA-E for it to become a ligand for the conserved CD94:NKG2A receptor. Methionine/threonine dimorphism at position -21 of the leader sequence divides HLA-B allotypes into a majority having -21T that do not supply HLA-E binding peptides and a minority having -21M, that do. Genetic analysis of human populations worldwide shows how haplotypes with -21M HLA-B rarely encode the KIR ligands: Bw4+HLA-B and C2+HLA-C KIR. Thus there are two fundamental forms of HLA haplotype: one preferentially supplying CD94:NKG2A ligands, the other preferentially supplying KIR ligands. -21 HLA-B dimorphism divides the human population into three groups: M/M, M/T and T/T. Mass cytometry and assays of immune function, shows how M/M and M/T individuals have CD94:NKG2A+ NK cells which are better educated, phenotypically more diverse and functionally more potent than those in T/T individuals. Fundamental new insights are given to genetic control of NK cell immunity and the evolution that has limited the number of NK cell receptor ligands encoded by an HLA haplotype. These finding suggest new ways to dissect the numerous clinical associations with HLA class I.

14.
J Innate Immun ; 8(4): 374-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27116381

RESUMO

Among innate cells, natural killer (NK) cells play a crucial role in the defense against cytomegalovirus (CMV). In some individuals, CMV infection induces the expansion of NKG2C+ NK cells that persist after control of the infection. We have previously shown that KIR2DL+ NK cells, in contrast to NKG2C+ NK cells, contribute to controlling CMV infection using a CMV-infected monocyte-derived dendritic cell (MDDC) model. However, the nature of CMV-infected cells contributing to the expansion of the NKG2C+ NK cell subset remains unclear. To gain more insight into this question, we investigated the contribution of NKG2C+ NK cell activation by CMV-infected primary human aortic endothelial cells (EC) isolated from kidney transplant donors, which constitutively express the human leukocyte antigen (HLA)-E molecule. Here, we show that, although classic HLA class I expression was drastically downregulated, nonclassic HLA-E expression was maintained in CMV-infected EC. By comparing HLA expression patterns in CMV-infected EC, fibroblasts and MDDC, we demonstrate a cell-dependent modulation of HLA-E expression by CMV infection. NKG2C+ NK cell degranulation was significantly triggered by CMV-infected EC regardless of the nature of the HLA-E allele product. EC, predominantly present in vessels, may constitute a privileged site for CMV infection that drives a 'memory' NKG2C+ NK cell subset.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Células Dendríticas/imunologia , Endotélio Vascular/imunologia , Fibroblastos/imunologia , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/imunologia , Aorta/patologia , Degranulação Celular , Proliferação de Células , Células Cultivadas , Células Dendríticas/virologia , Endotélio Vascular/virologia , Fibroblastos/virologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Memória Imunológica , Células Matadoras Naturais/virologia , Ativação Linfocitária , Subpopulações de Linfócitos/virologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores KIR2DL1/metabolismo , Antígenos HLA-E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA