Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Virol ; 168(2): 71, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658443

RESUMO

Despite the ecological significance of viral communities, phages remain insufficiently studied. Current genomic databases lack high-quality phage genome sequences linked to specific bacteria. Bacteria of the genus Erwinia are known to colonize the phyllosphere of plants, both as commensals and as pathogens. We isolated three Erwinia billingiae phages-Zoomie, Pecta, and Snitter-from organic household waste. Based on sequence similarity to their closest relatives, we propose that they represent three new genera: "Pectavirus" within the family Zobellviridae, "Snittervirus" in the subfamily Tempevirinae, family Drexlerviridae, and "Zoomievirus" within the family Autographiviridae, which, together with the genus Limelightvirus, may constitute a new subfamily.


Assuntos
Bacteriófagos , Erwinia , Bacteriófagos/genética , Genoma Viral , Erwinia/genética
2.
Arch Virol ; 168(3): 89, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786922

RESUMO

Despite Curtobacterium spp. often being associated with the plant phyllosphere, i.e., the areal region of different plant species, only one phage targeting a member of the genus Curtobacterium has been isolated so far. In this study, we isolated four novel plaque-forming Curtobacterium phages, Reje, Penoan, Parvaparticeps, and Pize, with two novel Curtobacterium strains as propagation hosts. Based on the low nucleotide intergenomic similarity (<32.4%) between these four phages and any phage with a genome sequence in the NCBI database, we propose the establishment of the four genera, "Rejevirus", "Pizevirus", "Penoanvirus", and "Parvaparticepsvirus", all in the class of Caudoviricetes.


Assuntos
Actinomycetales , Bacteriófagos , Bacteriófagos/genética , Actinomycetales/genética , Genoma Viral
3.
Viruses ; 14(2)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35215838

RESUMO

The phyllosphere microbiome plays an important role in plant fitness. Recently, bacteriophages have been shown to play a role in shaping the bacterial community composition of the phyllosphere. However, no studies on the diversity and abundance of phyllosphere bacteriophage communities have been carried out until now. In this study, we extracted, sequenced, and characterized the dsDNA and ssDNA viral community from a phyllosphere for the first time. We sampled leaves from winter wheat (Triticum aestivum), where we identified a total of 876 virus operational taxonomic units (vOTUs), mostly predicted to be bacteriophages with a lytic lifestyle. Remarkably, 848 of these vOTUs corresponded to new viral species, and we estimated a minimum of 2.0 × 106 viral particles per leaf. These results suggest that the wheat phyllosphere harbors a large and active community of novel bacterial viruses. Phylloviruses have potential applications as biocontrol agents against phytopathogenic bacteria or as microbiome modulators to increase plant growth-promoting bacteria.


Assuntos
Bacteriófagos/isolamento & purificação , Triticum/microbiologia , Bacteriófagos/classificação , Bacteriófagos/genética , Genoma Viral/genética , Metagenoma/genética , Microbiota , Folhas de Planta/microbiologia , Pseudomonadaceae/classificação , Pseudomonadaceae/genética , Pseudomonadaceae/isolamento & purificação , Pseudomonadaceae/virologia , Toxinas Biológicas/genética
4.
Phage (New Rochelle) ; 1(4): 251-259, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36147281

RESUMO

Background: Bacterial soft rot caused by members of the soft rot Pectobacteriaceae afflicts plant production of both vegetable and ornamental crops. Recent outbreaks highlight Dickeya sp. in the etiology of this disease in potatoes. Since there is a lack of control strategies for these diseases, alternative approaches have been suggested, including the use of biological control mediated by bacteriophages (phages). However, phages infecting many of these members are still undiscovered or poorly described. Materials and Methods: Two phages targeting Dickeya dadantii subsp. dadantii (NCPPB 4097) were isolated from household organic waste and purified. They were then further characterized using whole-genome sequencing and comparative genomics, transmission electron microscopy, latent period and burst size. Results: Dickeya phage Sucellus displayed Siphovirus morphology and had a genome of 39,826 bp with very limited similarity to any previously described phages. Dickeya phage Amaethon had a Podovirus morphology with a genome comprising 41,436 bp and limited similarity to phages in the Kafuna genus. The phages exhibited burst sizes of app. 94 and 240 virions per cell with latent periods of 91 and 86 minutes for Sucellus and Amaethon, respectively. While both phages had similar adsorption efficiencies and latent periods, the rise periods for the two phages diverged markedly, highlighting an odd growth pattern. Conclusions: Together, the two phages isolated here expand the known diversity of phages infecting the important plant pathogen D. dadantii. As they both share limited similarity to previously described groups of phages, they likely constitute novel genera within their respective groups.

5.
Phage (New Rochelle) ; 1(4): 237-244, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36147289

RESUMO

Background: Soft rot Pectobacteriaceae includes the genera Pectobacterium and Dickeya, which are important plant pathogens being responsible for diseases in a wide range of plant species, with potatoes as the main group. Both genera cause pre- and postharvest losses of potatoes, resulting in huge economic losses linked with the soft rot diseases. Materials and Methods: Organic waste was used to isolate phages, with Pectobacterium carotovorum subsp. carotovorum DSM 30170 as host. Complete genome sequencing, comparative genomics, and electron microscopy were used to characterize the phage. An adsorption assay was used to estimate adsorption rate. Twenty-three strains from the genera Pectobacterium and Dickeya were used to examine the host range of the phage. Results: Pectobacterium phage Jarilo represents a novel genus of bacteriophages within the family Autographiviridae, order Caudovirales. Jarilo possesses a double-stranded DNA genome of 40557 bp with a G+C% content of 50.08% and 50 predicted open reading frames. Gene synteny and products seem to be partly conserved between Pectobacterium phage Jarilo and Enterobacteria phage T7, but limited nucleotide similarity is found between Jarilo and other phages within the family Autographiviridae. The adsorption rate of phage Jarilo increased continuously for 1 h upon infection. Phage Jarilo was not able to infect any strains of P. carotovorum and Dickeya tested with the exception of the P. carotovorum strain used for isolation. However, phage Jarilo infected 10 of 16 Pectobacterium atrosepticum strains tested. Conclusion: We propose Pectobacterium phage Jarilo as the first member of a new genus of bacteriophages within the family Autographiviridae, order Caudovirales, displaying a broad host range within the genera of Pectobacterium.

6.
Sci Rep ; 10(1): 8763, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472049

RESUMO

Bacteria of Lactobacillus sp. are very useful to humans. However, the biology and genomic diversity of their (bacterio)phage enemies remains understudied. Knowledge on Lactobacillus phage diversity should broaden to develop efficient phage control strategies. To this end, organic waste samples were screened for phages against two wine-related Lactobacillus plantarum strains. Isolates were shotgun sequenced and compared against the phage database and each other by phylogenetics and comparative genomics. The new isolates had only three distant relatives from the database, but displayed a high overall degree of genomic similarity amongst them. The latter allowed for the use of one isolate as a representative to conduct transmission electron microscopy and structural protein sequencing, and to study phage adsorption and growth kinetics. The microscopy and proteomics tests confirmed the observed diversity of the new isolates and supported their classification to the family Siphoviridae and the proposal of the new phage genus "Silenusvirus".


Assuntos
Bacteriófagos/isolamento & purificação , Lactobacillus plantarum/virologia , Adsorção , Bacteriólise , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , DNA Viral/genética , Dinamarca , Genoma Viral , Microscopia Eletrônica , Filogenia , Especificidade da Espécie , Ensaio de Placa Viral , Instalações de Eliminação de Resíduos , Vinho/microbiologia
7.
FEMS Microbiol Lett ; 366(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095303

RESUMO

Pectobacterium atrosepticum is a species of plant pathogenic bacteria responsible for significant losses in potato production worldwide. Pectobacterium atrosepticum can cause blackleg disease on potato stems as well as the tuber disease termed potato soft rot. Methods for the effective control of these diseases are limited and are primarily based on good agricultural practices. Bacteriophages, viruses of bacteria, could be used as an alternative, environmentally friendly, control measure. Here, we describe the isolation and characterization of 29 phages virulent to P. atrosepticum. The phages belong to 12 different species based on a 95% sequence identity cut-off. Furthermore, based on sequence diversity and propagation results, we selected six of these phages to form a phage cocktail. The phages in the cocktail was tested on a number of P. atrosepticum strains in order to determine their host range. The phages was found to lyse 93% of the tested strains. The cocktail was subsequently tested for its effectiveness in combatting potato soft rot under simulated storage conditions. Use of the phage cocktail reduced both disease incidence and disease severity by 61% and 64%, respectively, strongly indicating that phage biocontrol has the potential to reduce the economic impact of soft rot in potato production.


Assuntos
Bacteriófagos/isolamento & purificação , Armazenamento de Alimentos/métodos , Pectobacterium/patogenicidade , Doenças das Plantas/prevenção & controle , Tubérculos/microbiologia , Solanum tuberosum/microbiologia , Bacteriófagos/classificação , Agentes de Controle Biológico , Pectobacterium/virologia , Filogenia , Doenças das Plantas/microbiologia
8.
Viruses ; 11(7)2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277436

RESUMO

Lactobacillus plantarum is a bacterium with probiotic properties and promising applications in the food industry and agriculture. So far, bacteriophages of this bacterium have been moderately addressed. We examined the diversity of five new L. plantarum phages via whole genome shotgun sequencing and in silico protein predictions. Moreover, we looked into their phylogeny and their potential genomic similarities to other complete phage genome records through extensive nucleotide and protein comparisons. These analyses revealed a high degree of similarity among the five phages, which extended to the vast majority of predicted virion-associated proteins. Based on these, we selected one of the phages as a representative and performed transmission electron microscopy and structural protein sequencing tests. Overall, the results suggested that the five phages belong to the family Myoviridae, they have a long genome of 137,973-141,344 bp, a G/C content of 36.3-36.6% that is quite distinct from their host's, and surprisingly, 7 to 15 tRNAs. Only an average 41/174 of their predicted genes were assigned a function. The comparative analyses unraveled considerable genetic diversity for the five L. plantarum phages in this study. Hence, the new genus "Semelevirus" was proposed, comprising exclusively of the five phages. This novel lineage of Lactobacillus phages provides further insight into the genetic heterogeneity of phages infecting Lactobacillus sp. The five new Lactobacillus phages have potential value for the development of more robust starters through, for example, the selection of mutants insensitive to phage infections. The five phages could also form part of phage cocktails, which producers would apply in different stages of L. plantarum fermentations in order to create a range of organoleptic outputs.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Lactobacillus plantarum/virologia , Lactobacillus/virologia , Myoviridae/classificação , Myoviridae/isolamento & purificação , Filogenia , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Composição de Bases , Empacotamento do DNA , Genoma Viral , Genômica/métodos , Microscopia Eletrônica de Transmissão , Myoviridae/genética , Myoviridae/ultraestrutura , Análise de Sequência de DNA , Proteínas Estruturais Virais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA