Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 47(10): 5016-5037, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923829

RESUMO

Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death.


Assuntos
Apoptose , Diferenciação Celular , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Células Mieloides/metabolismo , Acetilação , Animais , Células Cultivadas , Cromatina/genética , Epigênese Genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Processamento de Proteína Pós-Traducional , Transcrição Gênica
2.
Nucleic Acids Res ; 46(14): 7022-7039, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29893918

RESUMO

DNA methylation is an epigenetic mechanism known to affect gene expression and aberrant DNA methylation patterns have been described in cancer. However, only a small fraction of differential methylation events target genes with a defined role in cancer, raising the question of how aberrant DNA methylation contributes to carcinogenesis. As recently a link has been suggested between methylation patterns arising in ageing and those arising in cancer, we asked which aberrations are unique to cancer and which are the product of normal ageing processes. We therefore compared the methylation patterns between ageing and cancer in multiple tissues. We observed that hypermethylation preferentially occurs in regulatory elements, while hypomethylation is associated with structural features of the chromatin. Specifically, we observed consistent hypomethylation of late-replicating, lamina-associated domains. The extent of hypomethylation was stronger in cancer, but in both ageing and cancer it was proportional to the replication timing of the region and the cell division rate of the tissue. Moreover, cancer patients who displayed more hypomethylation in late-replicating, lamina-associated domains had higher expression of cell division genes. These findings suggest that different cell division rates contribute to tissue- and cancer type-specific DNA methylation profiles.


Assuntos
Envelhecimento/genética , Carcinogênese/genética , Divisão Celular/genética , Metilação de DNA , Período de Replicação do DNA , Neoplasias/genética , Cromatina/química , Cromossomos Humanos , Genes Neoplásicos , Humanos , Especificidade de Órgãos , Sequências Reguladoras de Ácido Nucleico
3.
Hum Reprod ; 30(5): 1014-28, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25753583

RESUMO

STUDY QUESTION: Are there DNA methylation alterations in sperm that could explain the reduced biological fertility of male partners from couples with unexplained infertility? SUMMARY ANSWER: DNA methylation patterns, not only at specific loci but also at Alu Yb8 repetitive sequences, are altered in infertile individuals compared with fertile controls. WHAT IS KNOWN ALREADY: Aberrant DNA methylation of sperm has been associated with human male infertility in patients demonstrating either deficiencies in the process of spermatogenesis or low semen quality. STUDY DESIGN, SIZE, DURATION: Case and control prospective study. This study compares 46 sperm samples obtained from 17 normospermic fertile men and 29 normospermic infertile patients. PARTICIPANTS/MATERIALS, SETTING, METHODS: Illumina Infinium HD Human Methylation 450K arrays were used to identify genomic regions showing differences in sperm DNA methylation patterns between five fertile and seven infertile individuals. Additionally, global DNA methylation of sperm was measured using the Methylamp Global DNA Methylation Quantification Ultra kit (Epigentek) in 14 samples, and DNA methylation at several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4) measured by bisulfite pyrosequencing in 44 sperm samples. A sperm-specific DNA methylation pattern was obtained by comparing the sperm methylomes with the DNA methylomes of differentiated somatic cells using data obtained from methylation arrays (Illumina 450 K) of blood, neural and glial cells deposited in public databases. MAIN RESULTS AND THE ROLE OF CHANCE: In this study we conduct, for the first time, a genome-wide study to identify alterations of sperm DNA methylation in individuals with unexplained infertility that may account for the differences in their biological fertility compared with fertile individuals. We have identified 2752 CpGs showing aberrant DNA methylation patterns, and more importantly, these differentially methylated CpGs were significantly associated with CpG sites which are specifically methylated in sperm when compared with somatic cells. We also found statistically significant (P < 0.001) associations between DNA hypomethylation and regions corresponding to those which, in somatic cells, are enriched in the repressive histone mark H3K9me3, and between DNA hypermethylation and regions enriched in H3K4me1 and CTCF, suggesting that the relationship between chromatin context and aberrant DNA methylation of sperm in infertile men could be locus-dependent. Finally, we also show that DNA methylation patterns, not only at specific loci but also at several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4), were lower in sperm than in somatic cells. Interestingly, sperm samples at Alu Yb8 repetitive sequences of infertile patients showed significantly lower DNA methylation levels than controls. LIMITATIONS, REASONS FOR CAUTION: Our results are descriptive and further studies would be needed to elucidate the functional effects of aberrant DNA methylation on male fertility. WIDER IMPLICATIONS OF THE FINDINGS: Overall, our data suggest that aberrant sperm DNA methylation might contribute to fertility impairment in couples with unexplained infertility and they provide a promising basis for future research. STUDY FUNDING/COMPETING INTERESTS: This work has been financially supported by Fundación Cientifica de la AECC (to R.G.U.); IUOPA (to G.F.B.); FICYT (to E.G.T.); the Spanish National Research Council (CSIC; 200820I172 to M.F.F.); Fundación Ramón Areces (to M.F.F); the Plan Nacional de I+D+I 2008-2011/2013-2016/FEDER (PI11/01728 to AF.F., PI12/01080 to M.F.F. and PI12/00361 to S.L.); the PN de I+D+I 2008-20011 and the Generalitat de Catalunya (2009SGR01490). A.F.F. is sponsored by ISCIII-Subdirección General de Evaluación y Fomento de la Investigación (CP11/00131). S.L. is sponsored by the Researchers Stabilization Program from the Spanish National Health System (CES09/020). The IUOPA is supported by the Obra Social Cajastur, Spain.


Assuntos
Metilação de DNA , Infertilidade Masculina/genética , Sêmen/metabolismo , Espermatozoides/patologia , Adulto , Elementos Alu , Estudos de Casos e Controles , Ilhas de CpG , Estudo de Associação Genômica Ampla , Genômica , Histonas/química , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Análise do Sêmen , Espermatogênese , Adulto Jovem
4.
Nat Ecol Evol ; 8(5): 986-998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38443606

RESUMO

Horizontal gene transfer, the exchange of genetic material through means other than reproduction, is a fundamental force in prokaryotic genome evolution. Genomic persistence of horizontally transferred genes has been shown to be influenced by both ecological and evolutionary factors. However, there is limited availability of ecological information about species other than the habitats from which they were isolated, which has prevented a deeper exploration of ecological contributions to horizontal gene transfer. Here we focus on transfers detected through comparison of individual gene trees to the species tree, assessing the distribution of gene-exchanging prokaryotes across over a million environmental sequencing samples. By analysing detected horizontal gene transfer events, we show distinct functional profiles for recent versus old events. Although most genes transferred are part of the accessory genome, genes transferred earlier in evolution tend to be more ubiquitous within present-day species. We find that co-occurring, interacting and high-abundance species tend to exchange more genes. Finally, we show that host-associated specialist species are most likely to exchange genes with other host-associated specialist species, whereas species found across different habitats have similar gene exchange rates irrespective of their preferred habitat. Our study covers an unprecedented scale of integrated horizontal gene transfer and environmental information, highlighting broad eco-evolutionary trends.


Assuntos
Bactérias , Transferência Genética Horizontal , Bactérias/genética , Genoma Bacteriano , Ecossistema , Archaea/genética , Genoma Arqueal , Evolução Molecular
5.
Microbiol Mol Biol Rev ; 87(4): e0006323, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37947420

RESUMO

SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.


Assuntos
Microbiota , Humanos , Microbiota/genética , Disbiose
6.
Front Med (Lausanne) ; 8: 588584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777968

RESUMO

Background: Since its discovery, the respiratory microbiome has been implicated in the pathogenesis of multiple pulmonary diseases. Even though corticosteroid treatments are widely prescribed for pulmonary diseases, their effects on the respiratory microbiome are still poorly understood. This systematic review summarizes the current understanding of the effects of corticosteroids on the microbiome of the airways. Research Question: How does treatment with corticosteroids impact the respiratory microbiome? Study Design and Methods: According to the PRISMA guidelines, Embase, Medline, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were systematically searched for all observational or randomized-controlled studies comparing the microbiome parameters of patients receiving corticosteroids to those of controls. The primary outcomes of interest were changes in the diversity, composition and total burden of the respiratory microbiome as assessed by culture-independent molecular methods. Results: Out of 1,943 identified reports, five studies could be included: two on patients with asthma, two on patients with chronic obstructive pulmonary disease and one on patients with chronic rhinosinusitis. The studies were highly heterogeneous with regards to the methods used and the populations investigated. Microbiome diversity increased with corticosteroids at least transiently in three studies and decreased in one study. The effects of corticosteroids on the composition of the respiratory microbiome were significant but without a clear shared direction. A significant increase in microbial burden after corticosteroids was seen in one study. Interpretation: Data on the effect of corticosteroids on the respiratory microbiome are still limited, with considerable heterogeneity between studies. However, available data suggest that corticosteroid treatment may have significant effects on the composition and possibly the diversity of the respiratory microbiome. Further research is needed to better understand the influence of corticosteroids on the respiratory microbiome and thus better target its widespread therapeutic use.

7.
mBio ; 12(2)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33688005

RESUMO

In cystic fibrosis, dynamic and complex communities of microbial pathogens and commensals can colonize the lung. Cultured isolates from lung sputum reveal high inter- and intraindividual variability in pathogen strains, sequence variants, and phenotypes; disease progression likely depends on the precise combination of infecting lineages. Routine clinical protocols, however, provide a limited overview of the colonizer populations. Therefore, a more comprehensive and precise identification and characterization of infecting lineages could assist in making corresponding decisions on treatment. Here, we describe longitudinal tracking for four cystic fibrosis patients who exhibited extreme clinical phenotypes and, thus, were selected from a pilot cohort of 11 patients with repeated sampling for more than a year. Following metagenomics sequencing of lung sputum, we find that the taxonomic identity of individual colonizer lineages can be easily established. Crucially, even superficially clonal pathogens can be subdivided into multiple sublineages at the sequence level. By tracking individual allelic differences over time, an assembly-free clustering approach allows us to reconstruct multiple lineage-specific genomes with clear structural differences. Our study showcases a culture-independent shotgun metagenomics approach for longitudinal tracking of sublineage pathogen dynamics, opening up the possibility of using such methods to assist in monitoring disease progression through providing high-resolution routine characterization of the cystic fibrosis lung microbiome.IMPORTANCE Cystic fibrosis patients frequently suffer from recurring respiratory infections caused by colonizing pathogenic and commensal bacteria. Although modern therapies can sometimes alleviate respiratory symptoms by ameliorating residual function of the protein responsible for the disorder, management of chronic respiratory infections remains an issue. Here, we propose a minimally invasive and culture-independent method to monitor microbial lung content in patients with cystic fibrosis at minimal additional effort on the patient's part. Through repeated sampling and metagenomics sequencing of our selected cystic fibrosis patients, we successfully classify infecting bacterial lineages and deconvolute multiple lineage variants of the same species within a given patient. This study explores the application of modern computational methods for deconvoluting lineages in the cystic fibrosis lung microbiome, an environment known to be inhabited by a heterogeneous pathogen population that complicates management of the disorder.


Assuntos
Bactérias/classificação , Bactérias/genética , Fibrose Cística/microbiologia , Pulmão/microbiologia , Microbiota , Bactérias/metabolismo , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Longitudinais , Metagenômica , Infecções Respiratórias , Escarro/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA