Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 181(4): 1415-1424, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636105

RESUMO

Hypocotyl length determination is a widely used method to phenotype young seedlings. The measurement itself has advanced from using rulers and millimeter papers to assessing digitized images but remains a labor-intensive, monotonous, and time-consuming procedure. To make high-throughput plant phenotyping possible, we developed a deep-learning-based approach to simplify and accelerate this method. Our pipeline does not require a specialized imaging system but works well with low-quality images produced with a simple flatbed scanner or a smartphone camera. Moreover, it is easily adaptable for a diverse range of datasets not restricted to Arabidopsis (Arabidopsis thaliana). Furthermore, we show that the accuracy of the method reaches human performance. We not only provide the full code at https://github.com/biomag-lab/hypocotyl-UNet, but also give detailed instructions on how the algorithm can be trained with custom data, tailoring it for the requirements and imaging setup of the user.


Assuntos
Arabidopsis/anatomia & histologia , Aprendizado Profundo , Ensaios de Triagem em Larga Escala , Hipocótilo/anatomia & histologia , Algoritmos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Hipocótilo/efeitos da radiação , Luz , Redes Neurais de Computação , Fenótipo
2.
Plant J ; 96(6): 1242-1254, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30256479

RESUMO

Circadian clocks are gene networks producing 24-h oscillations at the level of clock gene expression that are synchronized to environmental cycles via light signals. The ELONGATED HYPOCOTYL 5 (HY5) transcription factor is a signalling hub acting downstream of several photoreceptors and is a key mediator of photomorphogenesis. Here we describe a mechanism by which light quality could modulate the pace of the circadian clock through governing abundance of HY5. We show that hy5 mutants display remarkably shorter period rhythms in blue but not in red light or darkness, and blue light is more efficient than red to induce accumulation of HY5 at transcriptional and post-transcriptional levels. We demonstrate that the pattern and level of HY5 accumulation modulates its binding to specific promoter elements of the majority of clock genes, but only a few of these show altered transcription in the hy5 mutant. Mathematical modelling suggests that the direct effect of HY5 on the apparently non-responsive clock genes could be masked by feedback from the clock gene network. We conclude that the information on the ratio of blue and red components of the white light spectrum is decoded and relayed to the circadian oscillator, at least partially, by HY5.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Relógios Circadianos , Proteínas Nucleares/fisiologia , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Relógios Circadianos/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Luz , Regiões Promotoras Genéticas
3.
Plant J ; 83(5): 794-805, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26120968

RESUMO

Optimal timing of flowering in higher plants is crucial for successful reproduction and is coordinated by external and internal factors, including light and the circadian clock. In Arabidopsis, light-dependent stabilization of the rhythmically expressed CONSTANS (CO) is required for the activation of FLOWERING LOCUS T (FT), resulting in the initiation of flowering. Phytochrome A and cryptochrome photoreceptors stabilize CO in the evening by attenuating the activity of the CONSTITUTIVE PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA-105 1 (COP1-SPA1) ubiquitin ligase complex, which promotes turnover of CO. In contrast, phytochrome B (phyB) facilitates degradation of CO in the morning and delays flowering. Accordingly, flowering is accelerated in phyB mutants. Paradoxically, plants overexpressing phyB also show early flowering, which may arise from an early phase of rhythmic CO expression. Here we demonstrate that overexpression of phyB induces FT transcription at dusk and in the night without affecting the phase or level of CO transcription. This response depends on the light-activated Pfr form of phyB that inhibits the function of the COP1-SPA1 complex by direct interactions. Our data suggest that attenuation of COP1 activity results in the accumulation of CO protein and subsequent induction of FT. We show that phosphorylation of Ser-86 inhibits this function of phyB by accelerating dark reversion and thus depletion of Pfr forms in the night. Our results explain the early flowering phenotype of phyB overexpression and reveal additional features of the molecular machinery by which photoreceptors mediate photoperiodism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/genética , Fitocromo B/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Relógios Circadianos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Fosforilação/genética , Fitocromo B/genética , Plantas Geneticamente Modificadas , Serina/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA