Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Arch Psychiatry Clin Neurosci ; 267(5): 427-443, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28035472

RESUMO

The vasopressin- and oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP) is expressed in various organs including the brain. However, knowledge about its presence in human hypothalamus is fragmentary. Functionally, for a number of reasons (genetic linkage, hydrolysis of oxytocin and vasopressin, its role as angiotensin IV receptor in learning and memory and others) IRAP might play a role in schizophrenia. We studied the regional and cellular localization of IRAP in normal human brain with special emphasis on the hypothalamus and determined numerical densities of IRAP-expressing cells in the paraventricular, supraoptic and suprachiasmatic nuclei in schizophrenia patients and controls. By using immunohistochemistry and Western blot analysis, IRAP was immunolocalized in postmortem human brains. Cell countings were performed to estimate numbers and numerical densities of IRAP immunoreactive hypothalamic neurons in schizophrenia patients and control cases. Shape, size and regional distribution of IRAP-expressing cells, as well the lack of co-localization with the glia marker glutamine synthetase, show that IRAP is expressed in neurons. IRAP immunoreactive cells were observed in the hippocampal formation, cerebral cortex, thalamus, amygdala and, abundantly, hypothalamus. Double labeling experiments (IRAP and oxytocin/neurophysin 1, IRAP with vasopressin/neurophysin 2) revealed that IRAP is present in oxytocinergic and in vasopressinergic neurons. In schizophrenia patients, the numerical density of IRAP-expressing neurons in the paraventricular and the suprachiasmatic nuclei is significantly reduced, which might be associated with the reduction in neurophysin-containing neurons in these nuclei in schizophrenia. The pathophysiological role of lowered hypothalamic IRAP expression in schizophrenia remains to be established.


Assuntos
Cistinil Aminopeptidase/metabolismo , Hipotálamo/enzimologia , Hipotálamo/patologia , Neurônios/enzimologia , Neuro-Hipófise/metabolismo , Esquizofrenia/patologia , Idoso , Autopsia , Doença Crônica , Feminino , Glutamato-Amônia Ligase/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neurofisinas/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Supraquiasmático/patologia , Vasopressinas/metabolismo
2.
Metab Brain Dis ; 32(6): 2143-2147, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28868581

RESUMO

There is recent evidence for ornithine transcarbamylase (OTC) expression in adult human brain. We decided to immunocytochemically map OTC throughout brain, and to further characterize OTC-immunopositive neurons. By using double immunolabeling technique for OTC and neuronal nitric oxide synthase (nNOS) OTC protein expression was revealed in a small subset of nitrergic (nNOS) neurons. Since citrulline (the reaction product of OTC) enhances the bioavailability of L-arginine, the substrate of nNOS, it is conceivable that OTC activity supports NO production in nitrergic neurons.


Assuntos
Encéfalo/metabolismo , Neurônios Nitrérgicos/metabolismo , Ornitina Carbamoiltransferase/metabolismo , Humanos , Imuno-Histoquímica , Óxido Nítrico Sintase Tipo I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA