Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338372

RESUMO

The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO• donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.


Assuntos
Benzamidas , Disfunção Cognitiva , Maleato de Dizocilpina , Compostos Nitrosos , Pirazóis , Piridinas , Sulfonamidas , Camundongos , Animais , Maleato de Dizocilpina/farmacologia , Óxido Nítrico/farmacologia , Escopolamina/farmacologia , Óxido Nítrico Sintase Tipo III , Disfunção Cognitiva/tratamento farmacológico , Encéfalo , Regulação Alostérica
2.
Chemistry ; 29(64): e202302408, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37616059

RESUMO

Chromophores with zwitterionic excited-state intramolecular proton transfer (ESIPT) have been shown to have larger Stock shifts and red-shifted emission wavelengths compared to the conventional π-delocalized ESIPT molecules. However, there is still a dearth of design strategies to expand the current library of zwitterionic ESIPT compounds. Herein, a novel zwitterionic excited-state intramolecular proton transfer system is reported, enabled by addition of 1,4,7-triazacyclononane (TACN) fragments on a dicyanomethylene-4H-pyran (DCM) scaffold. The solvent-dependent steady-state photophysical studies, pKa measurements, and computational analysis strongly support that the ESIPT process is more efficient with two TACN groups attached to the DCM scaffold and not affected by polar protic solvents. Impressively, compound DCM-OH-2-DT exhibits a near-infrared (NIR) emission at 740 nm along with an uncommonly large Stokes shift. Moreover, DCM-OH-2-DT shows high affinity towards soluble amyloid ß (Aß) oligomers in vitro and in 5xFAD mouse brain sections, and we have successfully applied DCM-OH-2-DT for the in vivo imaging of Aß aggregates and demonstrated its potential use as an early diagnostic agent for AD. Overall, this study can provide a general molecular design strategy for developing new zwitterionic ESIPT compounds with NIR emission in vivo imaging applications.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Camundongos , Prótons , Doença de Alzheimer/diagnóstico por imagem , Solventes
3.
Inorg Chem ; 62(50): 20820-20833, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38060375

RESUMO

The broader utilization of 64Cu positron emission tomography (PET) imaging agents has been hindered by the unproductive demetalation induced by bioreductants. To advance the development of 64Cu-based PET imaging tracers for Alzheimer's Disease (AD), there is a need for novel ligand design strategies. In this study, we developed sulfur-containing dithiapyridinophane (N2S2) bifunctional chelators (BFCs) as well as all nitrogen-based diazapyridinophane (N4) BFCs to compare their abilities to chelate Cu and target Aß aggregates. Through spectrophotometric titrations and electrochemical measurements, we have demonstrated that the N2S2-based BFCs exhibit >10 orders of magnitude higher binding affinity toward Cu(I) compared to their N4-based counterparts, while both types of BFCs exhibit high stability constants toward Cu(II). Notably, solid state structures for both Cu(II) and Cu(I) complexes supported by the two ligand frameworks were obtained, providing molecular insights into their copper chelating abilities. Aß binding experiments were conducted to study the structure-affinity relationship, and fluorescence microscopy imaging studies confirmed the selective labeling of the BFCs and their copper complexes. Furthermore, we investigated the potential of these ligands for the 64Cu-based PET imaging of AD through radiolabeling and autoradiography studies. We believe our findings provide molecular insights into the design of bifunctional Cu chelators that can effectively stabilize both Cu(II) and Cu(I) and, thus, can have significant implications for the development of 64Cu PET imaging as a diagnostic tool for AD.


Assuntos
Doença de Alzheimer , Quelantes , Humanos , Quelantes/química , Doença de Alzheimer/diagnóstico por imagem , Cobre , Radioisótopos de Cobre/química , Ligantes , Tomografia por Emissão de Pósitrons/métodos
4.
Cell Mol Biol Lett ; 28(1): 21, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36890458

RESUMO

Nitric oxide (NO) is one of the most important molecules released by endothelial cells, and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO bioavailability is a common hallmark of endothelial dysfunction underlying the pathogenesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric oxide synthase (eNOS) from the substrate L-arginine (L-Arg), with tetrahydrobiopterin (BH4) as an essential cofactor. Cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, aging, or smoking increase vascular oxidative stress that strongly affects eNOS activity and leads to eNOS uncoupling. Uncoupled eNOS produces superoxide anion (O2-) instead of NO, thus becoming a source of harmful free radicals exacerbating the oxidative stress further. eNOS uncoupling is thought to be one of the major underlying causes of endothelial dysfunction observed in the pathogenesis of vascular diseases. Here, we discuss the main mechanisms of eNOS uncoupling, including oxidative depletion of the critical eNOS cofactor BH4, deficiency of eNOS substrate L-Arg, or accumulation of its analog asymmetrical dimethylarginine (ADMA), and eNOS S-glutathionylation. Moreover, potential therapeutic approaches that prevent eNOS uncoupling by improving cofactor availability, restoration of L-Arg/ADMA ratio, or modulation of eNOS S-glutathionylation are briefly outlined.


Assuntos
Óxido Nítrico Sintase Tipo III , Doenças Vasculares , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Células Endoteliais/metabolismo , Superóxidos , Estresse Oxidativo
5.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139334

RESUMO

As a substitution for hormone replacement therapy, many breast cancer patients use black cohosh (BC) extracts in combination with doxorubicin (DOX)-based chemotherapy. In this study, we evaluated the viability and survival of BC- and DOX-treated MCF-7 cells. A preclinical model of MCF-7 xenografts was used to determine the influence of BC and DOX administration on tumor growth and metabolism. The number of apoptotic cells after incubation with both DOX and BC was significantly increased (~100%) compared to the control. Treatment with DOX altered the potential of MCF-7 cells to form colonies; however, coincubation with BC did not affect this process. In vivo, PET-CT imaging showed that combined treatment of DOX and BC induced a significant reduction in both metabolic activity (29%) and angiogenesis (32%). Both DOX and BC treatments inhibited tumor growth by 20% and 12%, respectively, and combined by 57%, vs. control. We successfully demonstrated that BC increases cytotoxic effects of DOX, resulting in a significant reduction in tumor size. Further studies regarding drug transport and tumor growth biomarkers are necessary to establish the underlying mechanism and potential clinical use of BC in breast cancer patients.


Assuntos
Antineoplásicos , Neoplasias da Mama , Cimicifuga , Humanos , Feminino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Antineoplásicos/uso terapêutico , Células MCF-7 , Linhagem Celular Tumoral
6.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269797

RESUMO

Personalized medicine is emerging as a new goal in the diagnosis and treatment of diseases. This approach aims to establish differences between patients suffering from the same disease, which allows to choose the most effective treatment. Molecular imaging (MI) enables advanced insight into molecule interactions and disease pathology, improving the process of diagnosis and therapy and, for that reason, plays a crucial role in personalized medicine. Nanoparticles are widely used in MI techniques due to their size, high surface area to volume ratio, and multifunctional properties. After conjugation to specific ligands and drugs, nanoparticles can transport therapeutic compounds directly to their area of action and therefore may be used in theranostics-the simultaneous implementation of treatment and diagnostics. This review summarizes different MI techniques, including optical imaging, ultrasound imaging, magnetic resonance imaging, nuclear imaging, and computed tomography imaging with theranostics nanoparticles. Furthermore, it explores the potential use of constructs that enables multimodal imaging and track diseases in real time.


Assuntos
Nanopartículas , Nanotecnologia , Sistemas de Liberação de Medicamentos , Humanos , Imagem Molecular/métodos , Imagem Multimodal , Nanopartículas/uso terapêutico
7.
Cell Mol Biol Lett ; 26(1): 10, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726678

RESUMO

BACKGROUND: Molecular imaging with molecularly targeted probes is a powerful tool for studying the spatio-temporal interactions between complex biological processes. The pivotal role of the receptor for advanced glycation end products (RAGE), and its involvement in numerous pathological processes, aroused the demand for RAGE-targeted imaging in various diseases. In the present study, we evaluated the use of a diagnostic imaging agent for RAGE quantification in an animal model of peripheral artery disease, a multimodal dual-labeled probe targeted at RAGE (MMIA-CML). METHODS: PAMAM dendrimer was conjugated with Nε-carboxymethyl-lysine (CML) modified albumin to synthesize the RAGE-targeted probe. A control untargeted agent carried native non-modified human albumin (HSA). Bifunctional p-SCN-Bn-NOTA was used to conjugate the 64Cu radioisotope. Surgical right femoral artery ligation was performed on C57BL/6 male mice. One week after femoral artery ligation, mice were injected with MMIA-CML or MMIA-HSA labeled with 64Cu radioisotope and 60 min later in vivo microPET-CT imaging was performed. Immediately after PET imaging studies, the murine hindlimb muscle tissues were excised and prepared for gene and protein expression analysis. RAGE gene and protein expression was assessed using real-time qPCR and Western blot technique respectively. To visualize RAGE expression in excised tissues, microscopic fluorescence imaging was performed using RAGE-specific antibodies and RAGE-targeted and -control MMIA. RESULTS: Animals subjected to PET imaging exhibited greater MMIA-CML uptake in ischemic hindlimbs than non-ischemic hindlimbs. We observed a high correlation between fluorescent signal detection and radioactivity measurement. Significant RAGE gene and protein overexpression were observed in ischemic hindlimbs compared to non-ischemic hindlimbs at one week after surgical ligation. Fluorescence microscopic staining revealed significantly increased uptake of RAGE-targeted nanoparticles in both ischemic and non-ischemic muscle tissues compared to the control probe but at a higher level in ischemic hindlimbs. Ischemic tissue exhibited explicit RAGE dyeing following anti-RAGE antibody and high colocalization with the MMIA-CML targeted at RAGE. CONCLUSIONS: The present results indicate increased expression of RAGE in the ischemic hindlimb and enable the use of multimodal nanoparticles in both in vitro and in vivo experimental models, creating the possibility for imaging structural and functional changes with a RAGE-targeted tracer.


Assuntos
Nanopartículas/química , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/patologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Modelos Animais de Doenças , Fluorescência , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos
8.
Eur J Nucl Med Mol Imaging ; 47(11): 2562-2576, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32166512

RESUMO

PURPOSE: Current screening and monitoring of prostate cancer (PCa) is insufficient, producing inaccurate diagnoses. Presence of the receptor for advanced glycation end-products (RAGE) is associated with signature characteristics of PCa development such as cell proliferation, anchorage-independent growth, angiogenesis, migration, invasion, and poor patient survival. Therefore, we developed a preclinical multimodal imaging strategy targeted at RAGE to diagnose and monitor PCa. METHODS: In this work, RAGE-targeted multimodal nanoparticles (64Cu-Cy5-G4-CML) were synthesized and rendered functional for nuclear and optical imaging using previously established methods. The probe's binding affinity and targeting specificity was assessed in androgen-dependent (LNCaP) and androgen-independent (DU145) prostate cancer cells using flow cytometry and confocal microscopy. In vivo PET-CT imaging was used to evaluate RAGE levels in DU145 and LNCaP xenograft models in mice. Then, tumors were excised post-imaging for histological staining and autoradiography to further assess RAGE levels and targeting efficiency of the tracer. Finally, RAGE levels from human PCa samples of varying Gleason Scores were evaluated using Western blot and immunohistochemical staining. RESULTS: PCa cell culture studies confirmed adequate RAGE-targeting with 64Cu-Cy5-G4-CML with KD between 360 and 540 nM as measured by flow cytometry. In vivo PET-CT images of PCa xenografts revealed favorable kinetics, rapid blood clearance, and a non-homogenous, enhanced uptake in tumors, which varied based on cell type and tumor size with mean uptake between 0.5 and 1.4%ID/g. RAGE quantification of human samples confirmed increased RAGE uptake corresponding to increased Gleason scoring. CONCLUSIONS: Our study has shown that RAGE-targeted cancer imaging is feasible and could significantly impact PCa management.


Assuntos
Radioisótopos de Cobre , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Receptor para Produtos Finais de Glicação Avançada
9.
Postepy Dermatol Alergol ; 37(4): 452-467, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32994764

RESUMO

Psoriasis is a systemic disease that is strictly connected with metabolic disorders (insulin resistance, atherogenic dyslipidemia, arterial hypertension, and cardiovascular diseases). It occurs more often in patients with a more severe course of the disease. Obesity is specially an independent risk factor and it is associated with a worse treatment outcome because of the high inflammatory activity of visceral fatty tissue and the production of inflammatory mediators involved in the development of both psoriasis and metabolic disorders. However, in psoriasis the activation of the Th17/IL-17 and the abnormalities in the Th17/Treg balance axis are observed, but this pathomechanism does not fully explain the frequent occurrence of metabolic disorders. Therefore, there is a need to look for better biomarkers in the diagnosis, prognosis and monitoring of concomitant disorders and therapeutic effects in psoriasis. In addition, the education on the use of a proper diet as a prophylaxis for the development of the above disorders is an important element of holistic care for a patient with psoriasis. Diet may affect gene expression due to epigenetic modification which encompasses interactions of environment, nutrition and diseases. Patients with psoriasis should be advised to adopt proper diet and dietician support.

10.
Postepy Dermatol Alergol ; 37(3): 283-298, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32774210

RESUMO

Psoriasis is a multifactorial disease in which genetic, environmental and epigenetic factors regulating gene expression play a key role. In the "genomic era", genome-wide association studies together with target genotyping platforms performed in different ethnic populations have found more than 50 genetic susceptible markers associated with the risk of psoriasis which have been identified so far. Up till now, the strongest association with the risk of the disease has been proved for HLA-C*06 gene. The majority of other psoriasis risk SNPs are situated near the genes encoding molecules involved in adaptive and innate immunity, and skin barrier function. Many contemporary studies indicate that the epigenetic changes: histone modification, promoter methylations, long non-coding and micro-RNA hyperexpression are considered as factors contributing to psoriasis pathogenesis as they regulate abnormal keratinocyte differentiation and proliferation, aberrant keratinocytes - inflammatory cells communication, neoangiogenesis and chronic inflammation. The circulating miRNAs detected in the blood may become specific markers in the diagnosis, prognosis and response to the treatment of the disease. The inhibition of expression in selected miRNAs may be a new promising therapy option for patients with psoriasis.

11.
Postepy Dermatol Alergol ; 37(5): 625-634, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33239999

RESUMO

Psoriatic arthritis (PsA) is a chronic, progressive, inflammatory arthropathy associated with psoriasis as well as a complex pathogenesis. Genetic and environmental factors trigger the development of the immune-mediated auto-inflammatory response in different sites: skin, bone marrow, entheses and synovial tissues. Studies of the last two decades have changed the view of PsA from a mild, non-progressive arthritis to an inflammatory systemic disease with serious health consequences, not only associated with joint dysfunction, but also with an increased risk of cardiovascular disease and socioeconomic consequences with significantly reduced quality of life. The joint damage starts early in the course of the disease, thus early recognition and treatment with modern biological treatments, which may modify the natural history and slow down progression of this debilitating disease, is essential for the patient long-term outcome.

12.
Postepy Dermatol Alergol ; 37(2): 135-153, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32489346

RESUMO

Psoriasis is a common, chronic, inflammatory, immune-mediated skin disease affecting about 2% of the world's population. According to current knowledge, psoriasis is a complex disease that involves various genes and environmental factors, such as stress, injuries, infections and certain medications. The chronic inflammation of psoriasis lesions develops upon epidermal infiltration, activation, and expansion of type 1 and type 17 Th cells. Despite the enormous progress in understanding the mechanisms that cause psoriasis, the target cells and antigens that drive pathogenic T cell responses in psoriatic lesions are still unproven and the autoimmune basis of psoriasis still remains hypothetical. However, since the identification of the Th17 cell subset, the IL-23/Th17 immune axis has been considered a key driver of psoriatic inflammation, which has led to the development of biologic agents that target crucial elements of this pathway. Here we present the current understanding of various aspects in psoriasis pathogenesis.

13.
Nat Chem Biol ; 13(4): 415-424, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28192414

RESUMO

Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne-doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice.


Assuntos
Neoplasias da Mama/metabolismo , Carboidratos/análise , Carboidratos/química , Neoplasias do Colo/metabolismo , Sondas Moleculares/análise , Sondas Moleculares/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias Experimentais/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Carboidratos/síntese química , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/tratamento farmacológico , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Sondas Moleculares/síntese química , Sondas Moleculares/química , Estrutura Molecular , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/tratamento farmacológico , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Proc Natl Acad Sci U S A ; 113(32): E4601-9, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457945

RESUMO

Malignant osteolysis associated with inoperable primary bone tumors and multifocal skeletal metastases remains a challenging clinical problem in cancer patients. Nanomedicine that is able to target and deliver therapeutic agents to diseased bone sites could potentially provide an effective treatment option for different types of skeletal cancers. Here, we report the development of polylactide nanoparticles (NPs) loaded with doxorubicin (Doxo) and coated with bone-seeking pamidronate (Pam) for the targeted treatment of malignant skeletal tumors. In vivo biodistribution of radiolabeled targeted Pam-NPs demonstrated enhanced bone tumor accumulation and prolonged retention compared with nontargeted NPs. In a murine model of focal malignant osteolysis, Pam-functionalized, Doxo-loaded NPs (Pam-Doxo-NPs) significantly attenuated localized osteosarcoma (OS) progression compared with nontargeted Doxo-NPs. Importantly, we report on the first evaluation to our knowlege of Pam-Doxo-NPs in dogs with OS, which possess tumors of anatomic size and physiology comparable to those in humans. The repeat dosing of Pam-Doxo-NPs in dogs with naturally occurring OS indicated the therapeutic was well tolerated without hematologic, nonhematologic, and cardiac toxicities. By nuclear scintigraphy, the biodistribution of Pam-Doxo-NPs demonstrated malignant bone-targeting capability and exerted measurable anticancer activities as confirmed with percent tumor necrosis histopathology assessment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Difosfonatos/administração & dosagem , Doxorrubicina/administração & dosagem , Nanoconjugados/administração & dosagem , Osteólise/tratamento farmacológico , Animais , Difosfonatos/farmacocinética , Doxorrubicina/toxicidade , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Pamidronato
15.
Angiogenesis ; 21(4): 711-724, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29737439

RESUMO

The nitric oxide (NO) secreted by vascular endothelium is required for the maintenance of cardiovascular homeostasis. Diminished release of NO generated by endothelial NO synthase contributes to endothelial dysfunction. Hypoxia and ischemia reduce endothelial eNOS expression via posttranscriptional mechanisms that result in NOS3 transcript destabilization. Here, we examine whether microRNAs contribute to this mechanism. We followed the kinetics of hypoxia-induced changes in NOS3 mRNA and eNOS protein levels in primary human umbilical vein endothelial cells (HUVECs). Utilizing in silico predictive protocols to identify potential miRNAs that regulate eNOS expression, we identified miR-200b as a candidate. We established the functional miR-200b target sequence within the NOS3 3'UTR, and demonstrated that manipulation of the miRNA levels during hypoxia using miR-200b mimics and antagomirs regulates eNOS levels, and established that miR-200b physiologically limits eNOS expression during hypoxia. Furthermore, we demonstrated that the specific ablation of the hypoxic induction of miR-200b in HUVECs restored eNOS-driven hypoxic NO release to the normoxic levels. To determine whether miR-200b might be the only miRNA that had this effect, we utilized Next Generation Sequencing (NGS) to follow hypoxia-induced changes in the miRNA levels in HUVECS and found 83 novel hypoxamiRs, with two candidate miRNAs besides miR-200b that could potentially influence eNOS levels. Taken together, the data establish miR-200b-eNOS regulation as a first hypoxamiR-based mechanism that limits NO bioavailability during hypoxia in endothelial cells, and show that hypoxamiRs could become useful therapeutic targets for cardiovascular diseases and other hypoxic-related diseases including various types of cancer.


Assuntos
Regulação Enzimológica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico/metabolismo , Hipóxia Celular , Células HEK293 , Humanos
16.
Proc Natl Acad Sci U S A ; 111(43): 15344-9, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25316794

RESUMO

Nanomedicines (NMs) offer new solutions for cancer diagnosis and therapy. However, extension of progression-free interval and overall survival time achieved by Food and Drug Administration-approved NMs remain modest. To develop next generation NMs to achieve superior anticancer activities, it is crucial to investigate and understand the correlation between the physicochemical properties of NMs (particle size in particular) and their interactions with biological systems to establish criteria for NM optimization. Here, we systematically evaluated the size-dependent biological profiles of three monodisperse drug-silica nanoconjugates (NCs; 20, 50, and 200 nm) through both experiments and mathematical modeling and aimed to identify the optimal size for the most effective anticancer drug delivery. Among the three NCs investigated, the 50-nm NC shows the highest tumor tissue retention integrated over time, which is the collective outcome of deep tumor tissue penetration and efficient cancer cell internalization as well as slow tumor clearance, and thus, the highest efficacy against both primary and metastatic tumors in vivo.


Assuntos
Antineoplásicos/química , Nanomedicina , Tamanho da Partícula , Animais , Antineoplásicos/uso terapêutico , Humanos , Células MCF-7 , Camundongos Nus , Nanoconjugados , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Dióxido de Silício/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Med Biol Eng ; 36: 32-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069461

RESUMO

The imaging of distributed sources with near-field coded aperture (CA) remains extremely challenging and is broadly considered unsuitable for single-photon emission computerized tomography (SPECT). This study proposes a novel CA SPECT reconstruction approach and evaluates the feasibilities of imaging and reconstructing distributed hot sources and cold lesions using near-field CA collimation and iterative image reconstruction. Computer simulations were designed to compare CA and pinhole collimations in two-dimensional radionuclide imaging. Digital phantoms were created and CA images of the phantoms were reconstructed using maximum likelihood expectation maximization (MLEM). Errors and the contrast-to-noise ratio (CNR) were calculated and image resolution was evaluated. An ex vivo rat heart with myocardial infarction was imaged using a micro-SPECT system equipped with a custom-made CA module and a commercial 5-pinhole collimator. Rat CA images were reconstructed via the three-dimensional (3-D) MLEM algorithm developed for CA SPECT with and without correction for a large projection angle, and 5-pinhole images were reconstructed using the commercial software provided by the SPECT system. Phantom images of CA were markedly improved in terms of image quality, quantitative root-mean-squared error, and CNR, as compared to pinhole images. CA and pinhole images yielded similar image resolution, while CA collimation resulted in fewer noise artifacts. CA and pinhole images of the rat heart were well reconstructed and the myocardial perfusion defects could be clearly discerned from 3-D CA and 5-pinhole SPECT images, whereas 5-pinhole SPECT images suffered from severe noise artifacts. Image contrast of CA SPECT was further improved after correction for the large projection angle used in the rat heart imaging. The computer simulations and small-animal imaging study presented herein indicate that the proposed 3-D CA SPECT imaging and reconstruction approaches worked reasonably well, demonstrating the feasibilities of achieving high sensitivity and high resolution SPECT using near-field CA collimation.

18.
Am J Pathol ; 184(5): 1562-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24606881

RESUMO

Endothelial dysfunction, including endothelial hyporesponsiveness to prototypical angiogenic growth factors and eNOS agonists, underlies vascular pathology in many dysmetabolic states. We investigated effects of a saturated free fatty acid, palmitic acid (PA), on endothelial cell responses to VEGF. PA-pretreated endothelial cells had markedly diminished Akt, eNOS, and ERK activation responses to VEGF, despite normal VEGFR2 phosphorylation. PA inhibited VEGF-induced angiogenic cord formation in Matrigel, and PA-treated endothelial cells accumulated early species (C16) ceramide. The serine palmitoyltransferase inhibitor myriocin reversed these defects. Protein phosphatase 2A (PP2A) became more eNOS-associated in PA-treated cells; the PP2A inhibitor okadaic acid reversed PA-induced signaling defects. Mice fed a diet high in saturated fat for 2 to 3 weeks had impaired i) aortic Akt and eNOS phosphorylation to infused VEGF, ii) ear angiogenic responses to intradermal adenoviral-VEGF injection, and iii) vascular flow recovery to hindlimb ischemia as indicated by laser Doppler and αVß3 SPECT imaging. High-fat feeding did not impair VEGF-induced signaling or angiogenic responses in mice with reduced serine palmitoyltransferase expression. Thus, de novo ceramide synthesis is required for these detrimental PA effects. The findings demonstrate an endothelial VEGF resistance mechanism conferred by PA, which comprises ceramide-induced, PP2A-mediated dephosphorylation of critical activation sites on enzymes central to vascular homeostasis and angiogenesis. This study defines potential molecular targets for preservation of endothelial function in metabolic syndrome.


Assuntos
Ceramidas/farmacologia , Células Endoteliais/enzimologia , Neovascularização Fisiológica/efeitos dos fármacos , Ácido Palmítico/farmacologia , Proteína Fosfatase 2/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Artérias/efeitos dos fármacos , Artérias/crescimento & desenvolvimento , Bovinos , Dieta Hiperlipídica , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Haploinsuficiência , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Humanos , Isquemia/patologia , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
IEEE Trans Biomed Eng ; PP2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442044

RESUMO

OBJECTIVE: We explored the capabilities of power-Doppler ultrasonic (PD-US) imaging without contrast enhancement for monitoring changes in muscle perfusion over time. METHODS: Ischemic recovery was observed in healthy and type II diabetic male and female mice with and without exercise. In separate studies, perfusion was measured during and after 5-min ischemic periods and during four-week recovery periods following irreversible femoral ligation. A goal was to assess how well PD-US estimates tracked the diabetic-related changes in endothelial function that influenced perfusion. RESULTS: The average perfusion recovery time following femoral ligation increased 47% in diabetic males and 74% in diabetic females compared with non-diabetic mice. Flow-mediated dilation in conduit arteries and the reactive hyperemia index in resistive vessels each declined by one half in sedentary diabetic mice compared with sedentary non-diabetic mice. We found that exercise reduced the loss of endothelial function from diabetes in both sexes. The reproducibility of perfusion measurements was limited primarily by our ability to select the same region in muscle and to effectively filter tissue clutter. CONCLUSIONS/SIGNIFICANCE: PD-US measurements can precisely follow site-specific changes in skeletal muscle perfusion related to diabetes over time, which fills the need for techniques capable of regularly monitoring atherosclerotic changes leading to ischemic vascular pathologies.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37926944

RESUMO

The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.


Assuntos
Diabetes Mellitus , Produtos Finais de Glicação Avançada , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Reação de Maillard , Diabetes Mellitus/metabolismo , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA