Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 18(1): 678, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29929491

RESUMO

BACKGROUND: The hypercoagulable state associated with pancreatic adenocarcinoma (PDA) results in increased risk of venous thromboembolism, leading to substantial morbidity and mortality. Recently, neutrophil extracellular traps (NETs), whereby activated neutrophils release their intracellular contents containing DNA, histones, tissue factor, high mobility group box 1 (HMGB1) and other components have been implicated in PDA and in cancer-associated thrombosis. METHODS: Utilizing an orthotopic murine PDA model in C57/Bl6 mice and patient correlative samples, we studied the role of NETs in PDA hypercoagulability and targeted this pathway through treatment with the NET inhibitor chloroquine. PAD4 and RAGE knockout mice, deficient in NET formation, were used to study the role of NETs in platelet aggregation, release of tissue factor and hypercoagulability. Platelet aggregation was assessed using collagen-activated impedance aggregometry. Levels of circulating tissue factor, the initiator of extrinsic coagulation, were measured using ELISA. Thromboelastograms (TEGs) were performed to assess hypercoagulability and changes associated with treatment. Correlative data and samples from a randomized clinical trial of preoperative gemcitabine/nab-paclitaxel with and without hydroxychloroquine were studied and the impact of treatment on venous thromboembolism (VTE) rate was evaluated. RESULTS: The addition of NETs to whole blood stimulated platelet activation and aggregation. DNA and the receptor for advanced glycation end products (RAGE) were necessary for induction of NET associated platelet aggregation. PAD4 knockout tumor-burdened mice, unable to form NETs, had decreased aggregation and decreased circulating tissue factor. The NET inhibitor chloroquine reduces platelet aggregation, reduces circulating tissue factor and decreases hypercoagulability on TEG. Review of correlative data from patients treated on a randomized protocol of preoperative chemotherapy with and without hydroxychloroquine demonstrated a reduction in peri-operative VTE rate from 30 to 9.1% with hydroxychloroquine that neared statistical significance (p = 0.053) despite the trial not being designed to study VTE. CONCLUSION: NETs promote hypercoagulability in murine PDA through stimulation of platelets and release of tissue factor. Chloroquine inhibits NETs and diminishes hypercoagulability. These findings support clinical study of chloroquine to lower rates of venous thromboembolism in patients with cancer. TRIAL REGISTRATION: This study reports correlative data from two clinical trials that registered with clinicaltrials.gov, NCT01128296 (May 21, 2010) and NCT01978184 (November 7, 2013).


Assuntos
Adenocarcinoma/complicações , Cloroquina/uso terapêutico , Armadilhas Extracelulares/efeitos dos fármacos , Neoplasias Pancreáticas/complicações , Trombofilia/tratamento farmacológico , Animais , DNA/fisiologia , Feminino , Humanos , Hidrolases/fisiologia , Hidroxicloroquina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Agregação Plaquetária/efeitos dos fármacos , Proteína-Arginina Desiminase do Tipo 4 , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Tromboelastografia , Tromboplastina/metabolismo , Tromboembolia Venosa/prevenção & controle
2.
Oncoimmunology ; 8(9): e1605822, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428515

RESUMO

Neutrophil extracellular trap (NET) formation results in the expulsion of granulocyte proteins and DNA into the extracellular space. This process is mediated by the enzyme peptidyl arginine deiminase 4 (PADI4) and translocation of elastase to the nucleus. NET formation, marked by increased levels of extracellular DNA, promotes pancreatic cancer proliferation and metastasis. Mice deficient in Padi4 demonstrate decreased pancreatic tumor growth, associated with a reduction in circulating extracellular DNA levels, diminished pancreatic stromal activation and improved survival in murine orthotopic pancreatic adenocarcinoma. Transplantation of Padi4-/- bone marrow into genetically engineered mice with Kras driven pancreatic adenocarcinoma (Pdx1-Cre:KrasG12D/+, KC mice) limits the frequency of invasive cancers when compared with syngeneic controls. DNA from neutrophils activates pancreatic stellate cells that form dense, fibrous stroma which can promote and enable tumor proliferation. DNase treatment diminishes murine tumor growth and stromal activation to reverse the effect of NETs within the tumor microenvironment. Furthermore, deletion of the receptor for advanced glycation end products (RAGE) in pancreatic stellate cells abrogates the effects of DNA in promoting stellate cell proliferation and decreases tumor growth. Circulating neutrophil-derived DNA correlates with the stage in patients with pancreatic ductal adenocarcinoma, confirming the role of NETs in human pancreatic cancer. These findings support further investigation into targeting of NETs, PADI4 and extracellular DNA as a potential treatment strategy in patients with pancreatic cancer. Trial Registration: This study reports correlative data from a clinical trial registered with clinicaltrials.gov, NCT01978184 (November 7, 2013).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA