Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Virol ; 90(10): 5075-5089, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962224

RESUMO

UNLABELLED: Nonprimate hepacivirus (NPHV), the closest homolog of hepatitis C virus (HCV) described to date, has recently been discovered in horses. Even though the two viruses share a similar genomic organization, conservation of the encoded hepaciviral proteins remains undetermined. The HCV p7 protein is localized within endoplasmic reticulum (ER) membranes and is important for the production of infectious particles. In this study, we analyzed the structural and functional features of NPHV p7 in addition to its role during virus assembly. Three-dimensional homology models for NPHV p7 using various nuclear magnetic resonance spectroscopy (NMR) structures were generated, highlighting the conserved residues important for ion channel function. By applying a liposome permeability assay, we observed that NPHV p7 exhibited liposome permeability features similar to those of HCV p7, indicative of similar ion channel activity. Next, we characterized the viral protein using a p7-based trans-complementation approach. A similar subcellular localization pattern at the ER membrane was observed, although production of infectious particles was likely hindered by genetic incompatibilities with HCV proteins. To further characterize these cross-species constraints, chimeric viruses were constructed by substituting different regions of HCV p7 with NPHV p7. The N terminus and transmembrane domains were nonexchangeable and therefore constitute a cross-species barrier in hepaciviral assembly. In contrast, the basic loop and the C terminus of NPHV p7 were readily exchangeable, allowing production of infectious trans-complemented viral particles. In conclusion, comparison of NPHV and HCV p7 revealed structural and functional homology of these proteins, including liposome permeability, and broadly acting determinants that modulate hepaciviral virion assembly and contribute to the host-species barrier were identified. IMPORTANCE: The recent discovery of new relatives of hepatitis C virus (HCV) enables for the first time the study of cross-species determinants shaping hepaciviral pathogenesis. Nonprimate hepacivirus (NPHV) was described to infect horses and represents so far the closest homolog of HCV. Both viruses encode the same viral proteins; however, NPHV protein functions remain poorly understood. In this study, we aimed to dissect NPHV p7 on a structural and functional level. By using various NMR structures of HCV p7 as templates, three-dimensional homology models for NPHV p7 were generated, highlighting conserved residues that are important for ion channel function. A p7-based trans-complementation approach and the construction of NPHV/HCV p7 chimeric viruses showed that the N terminus and transmembrane domains were nonexchangeable. In contrast, the basic loop and the C terminus of NPHV p7 were readily exchangeable, allowing production of infectious viral particles. These results identify species-specific constraints as well as exchangeable determinants in hepaciviral assembly.


Assuntos
Hepacivirus/genética , Hepacivirus/fisiologia , Canais Iônicos/química , Canais Iônicos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Montagem de Vírus , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Teste de Complementação Genética , Hepacivirus/química , Cavalos , Humanos , Canais Iônicos/genética , Lipossomos , Modelos Moleculares , Permeabilidade , Especificidade da Espécie , Proteínas Virais/genética , Replicação Viral
2.
Hepatology ; 63(1): 49-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26248546

RESUMO

UNLABELLED: To explore mechanisms of hepatitis C viral (HCV) replication we screened a compound library including licensed drugs. Flunarizine, a diphenylmethylpiperazine used to treat migraine, inhibited HCV cell entry in vitro and in vivo in a genotype-dependent fashion. Analysis of mosaic viruses between susceptible and resistant strains revealed that E1 and E2 glycoproteins confer susceptibility to flunarizine. Time of addition experiments and single particle tracking of HCV demonstrated that flunarizine specifically prevents membrane fusion. Related phenothiazines and pimozide also inhibited HCV infection and preferentially targeted HCV genotype 2 viruses. However, phenothiazines and pimozide exhibited improved genotype coverage including the difficult to treat genotype 3. Flunarizine-resistant HCV carried mutations within the alleged fusion peptide and displayed cross-resistance to these compounds, indicating that these drugs have a common mode of action. CONCLUSION: These observations reveal novel details about HCV membrane fusion; moreover, flunarizine and related compounds represent first-in-class HCV fusion inhibitors that merit consideration for repurposing as a cost-effective component of HCV combination therapies.


Assuntos
Flunarizina/farmacologia , Hepacivirus/efeitos dos fármacos , Proteínas Virais de Fusão/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Células Cultivadas , Genótipo , Hepacivirus/genética , Humanos , Proteínas Virais de Fusão/genética
3.
Gut ; 65(12): 2029-2034, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26306759

RESUMO

OBJECTIVE: Direct-acting antivirals (DAAs) inhibit hepatitis C virus (HCV) infection by targeting viral proteins that play essential roles in the replication process. However, selection of resistance-associated variants (RAVs) during DAA therapy has been a cause of therapeutic failure. In this study, we wished to address whether such RAVs could be controlled by the co-administration of host-targeting entry inhibitors that prevent intrahepatic viral spread. DESIGN: We investigated the effect of adding an entry inhibitor (the anti-scavenger receptor class B type I mAb1671) to a DAA monotherapy (the protease inhibitor ciluprevir) in human-liver mice chronically infected with HCV of genotype 1b. Clinically relevant non-laboratory strains were used to achieve viraemia consisting of a cloud of related viral variants (quasispecies) and the emergence of RAVs was monitored at high resolution using next-generation sequencing. RESULTS: HCV-infected human-liver mice receiving DAA monotherapy rapidly experienced on-therapy viral breakthrough. Deep sequencing of the HCV protease domain confirmed the manifestation of drug-resistant mutants upon viral rebound. In contrast, none of the mice treated with a combination of the DAA and the entry inhibitor experienced on-therapy viral breakthrough, despite detection of RAV emergence in some animals. CONCLUSIONS: This study provides preclinical in vivo evidence that addition of an entry inhibitor to an anti-HCV DAA regimen restricts the breakthrough of DAA-resistant viruses. Our approach is an excellent strategy to prevent therapeutic failure caused by on-therapy rebound of DAA-RAVs. Inclusion of an entry inhibitor to the newest DAA combination therapies may further increase response rates, especially in difficult-to-treat patient populations.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Hepacivirus/genética , Inibidores de Proteases/farmacologia , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Genótipo , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Fígado/efeitos dos fármacos , Camundongos , Mutação de Sentido Incorreto , Proteínas não Estruturais Virais/genética
4.
Hepatology ; 61(2): 447-59, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25212983

RESUMO

UNLABELLED: Hepatitis C virus (HCV) has a very narrow species and tissue tropism and efficiently replicates only in humans and the chimpanzee. Recently, several studies identified close relatives to HCV in different animal species. Among these novel viruses, the nonprimate hepaciviruses (NPHV) that infect horses are the closest relatives of HCV described to date. In this study, we analyzed the NPHV prevalence in northern Germany and characterized the clinical course of infection and viral tissue tropism to explore the relevance of HCV-related horse viruses as a model for HCV infection. We found that approximately 31.4% of 433 horses were seropositive for antibodies (Abs) against NPHV and approximately 2.5% carried viral RNA. Liver function analyses revealed no indication for hepatic impairment in 7 of 11 horses. However, serum gamma-glutamyl transferase (GGT) concentrations were mildly elevated in 3 horses, and 1 horse displayed even highly elevated GGT levels. Furthermore, we observed that NPHV infection could be cleared in individual horses with a simultaneous emergence of nonstructural (NS)3-specific Abs and transient elevation of serum levels of liver-specific enzymes indicative for a hepatic inflammation. In other individual horses, chronic infections could be observed with the copresence of viral RNA and NS3-specific Abs for over 6 months. For the determination of viral tissue tropism, we analyzed different organs and tissues of 1 NPHV-positive horse using quantitative real-time polymerase chain reaction and fluorescent in situ hydridization and detected NPHV RNA mainly in the liver and at lower amounts in other organs. CONCLUSION: Similar to HCV infections in humans, this work demonstrates acute and chronic stages of NPHV infection in horses with viral RNA detectable predominantly within the liver.


Assuntos
Hepacivirus/fisiologia , Hepatite Viral Animal/epidemiologia , Cavalos/virologia , Interações Hospedeiro-Patógeno , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Alemanha/epidemiologia , Fígado/virologia , Prevalência , Tropismo Viral
5.
J Gen Virol ; 96(9): 2636-2642, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26041875

RESUMO

The recent discovery of hepatitis C virus (HCV)-related viruses in different animal species has raised new speculations regarding the origin of HCV and the possibility of a zoonotic source responsible for the endemic HCV transmission. As a consequence, these new findings prompt questions regarding the potential for cross-species transmissions of hepaciviruses. The closest relatives to HCV discovered to date are the non-primate hepaciviruses (NPHVs), which have been described to infect horses. To evaluate the risk of a potential zoonotic transmission, we analysed NPHV RNA and antibodies in humans with occupational exposure to horses in comparison with a low-risk group. Both groups were negative for NPHV RNA, even though low seroreactivities against various NPHV antigens could be detected irrespective of the group. In conclusion, we did not observe evidence of NPHV transmission between horses and humans.


Assuntos
Doenças dos Trabalhadores Agrícolas/virologia , Hepacivirus/fisiologia , Hepatite C/veterinária , Hepatite C/virologia , Doenças dos Cavalos/virologia , Zoonoses/transmissão , Adulto , Animais , Feminino , Hepacivirus/classificação , Hepacivirus/genética , Hepatite C/transmissão , Doenças dos Cavalos/transmissão , Cavalos , Humanos , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional , Filogenia , Zoonoses/virologia
6.
J Virol ; 88(3): 1433-46, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24173232

RESUMO

Hepatitis C virus (HCV) predominantly infects human hepatocytes, although extrahepatic virus reservoirs are being discussed. Infection of cells is initiated via cell-free and direct cell-to-cell transmission routes. Cell type-specific determinants of HCV entry and RNA replication have been reported. Moreover, several host factors required for synthesis and secretion of lipoproteins from liver cells, in part expressed in tissue-specific fashion, have been implicated in HCV assembly. However, the minimal cell type-specific requirements for HCV assembly have remained elusive. Here we report that production of HCV trans-complemented particles (HCVTCP) from nonliver cells depends on ectopic expression of apolipoprotein E (ApoE). For efficient virus production by full-length HCV genomes, microRNA 122 (miR-122)-mediated enhancement of RNA replication is additionally required. Typical properties of cell culture-grown HCV (HCVcc) particles from ApoE-expressing nonliver cells are comparable to those of virions derived from human hepatoma cells, although specific infectivity of virions is modestly reduced. Thus, apolipoprotein B (ApoB), microsomal triglyceride transfer protein (MTTP), and apolipoprotein C1 (ApoC1), previously implicated in HCV assembly, are dispensable for production of infectious HCV. In the absence of ApoE, release of core protein from infected cells is reduced, and production of extracellular as well as intracellular infectivity is ablated. Since envelopment of capsids was not impaired, we conclude that ApoE acts after capsid envelopment but prior to secretion of infectious HCV. Remarkably, the lack of ApoE also abrogated direct HCV cell-to-cell transmission. These findings highlight ApoE as a host factor codetermining HCV tissue tropism due to its involvement in a late assembly step and viral cell-to-cell transmission.


Assuntos
Apolipoproteínas E/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Tropismo Viral , Montagem de Vírus , Apolipoproteínas E/genética , Linhagem Celular Tumoral , Hepacivirus/genética , Hepatite C/genética , Humanos , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Vírion/genética , Vírion/fisiologia
7.
Hepatology ; 60(2): 508-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24771613

RESUMO

UNLABELLED: The Japanese fulminant hepatitis-1 (JFH1)-based hepatitis C virus (HCV) infection system has permitted analysis of the complete viral replication cycle in vitro. However, lack of robust infection systems for primary, patient-derived isolates limits systematic functional studies of viral intrahost variation and vaccine development. Therefore, we aimed at developing cell culture models for incorporation of primary patient-derived glycoproteins into infectious HCV particles for in-depth mechanistic studies of envelope gene function. To this end, we first constructed a packaging cell line expressing core, p7, and NS2 based on the highly infectious Jc1 genotype (GT) 2a chimeric genome. We show that this packaging cell line can be transfected with HCV replicons encoding cognate Jc1-derived glycoprotein genes for production of single-round infectious particles by way of trans-complementation. Testing replicons expressing representative envelope protein genes from all major HCV genotypes, we observed that virus production occurred in a genotype- and isolate-dependent fashion. Importantly, primary GT 2 patient-derived glycoproteins were efficiently incorporated into infectious particles. Moreover, replacement of J6 (GT 2a) core, p7, and NS2 with GT 1a-derived H77 proteins allowed production of infectious HCV particles with GT 1 patient-derived glycoproteins. Notably, adaptive mutations known to enhance virus production from GT 1a-2a chimeric genomes further increased virus release. Finally, virus particles with primary patient-derived E1-E2 proteins possessed biophysical properties comparable to Jc1 HCVcc particles, used CD81 for cell entry, were associated with ApoE and could be neutralized by immune sera. CONCLUSION: This work describes cell culture systems for production of infectious HCV particles with primary envelope protein genes from GT 1 and GT 2-infected patients, thus opening up new opportunities to dissect envelope gene function in an individualized fashion.


Assuntos
Glicoproteínas/metabolismo , Hepacivirus/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , Vírion/metabolismo , Anticorpos Monoclonais/imunologia , Apolipoproteínas E/metabolismo , Teste de Complementação Genética , Células HEK293 , Hepacivirus/imunologia , Hepatite C/imunologia , Humanos , Testes de Neutralização , Filogenia , RNA Viral/genética , RNA Viral/metabolismo , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vacinas contra Hepatite Viral/imunologia , Vírion/imunologia , Replicação Viral/imunologia , Replicação Viral/fisiologia
8.
J Virol ; 87(24): 13297-306, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24089562

RESUMO

Hepatitis C virus (HCV) is highly variable and associated with chronic liver disease. Viral isolates are grouped into seven genotypes (GTs). Accumulating evidence indicates that viral determinants in the core to NS2 proteins modulate the efficiency of virus production. However, the role of the glycoproteins E1 and E2 in this process is currently poorly defined. Therefore, we constructed chimeric viral genomes to explore the role of E1 and E2 in HCV assembly. Comparison of the kinetics and efficiency of particle production by intragenotypic chimeras highlighted core and p7 as crucial determinants for efficient virion release. Glycoprotein sequences, however, had only a minimal impact on this process. In contrast, in the context of intergenotypic HCV chimeras, HCV assembly was profoundly influenced by glycoprotein genes. On the one hand, insertion of GT1a-derived (H77) E1-E2 sequences into a chimeric GT2a virus (Jc1) strongly suppressed virus production. On the other hand, replacement of H77 glycoproteins within the GT1a-GT2a chimeric genome H77/C3 by GT2a-derived (Jc1) E1-E2 increased infectious particle production. Thus, within intergenotypic chimeras, glycoprotein features strongly modulate virus production. Replacement of Jc1 glycoprotein genes by H77-derived E1-E2 did not grossly affect subcellular localization of core, E2, and NS2. However, it caused an accumulation of nonenveloped core protein and increased abundance of nonenveloped core protein structures with slow sedimentation. These findings reveal an important role for the HCV glycoproteins E1 and E2 in membrane envelopment, which likely depends on a genotype-specific interplay with additional viral factors.


Assuntos
Quimera/fisiologia , Hepacivirus/fisiologia , Hepatite C/virologia , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Quimera/classificação , Quimera/genética , Genótipo , Hepacivirus/classificação , Hepacivirus/genética , Humanos , Proteínas do Envelope Viral/genética , Montagem de Vírus
9.
J Infect Dis ; 207(2): 281-7, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23129759

RESUMO

BACKGROUND: Hepatitis C virus (HCV) transmission among people who inject drugs remains a challenging public health problem. We investigated the risk of HCV transmission by analyzing the direct association of HCV with filters, water to dilute drugs, and water containers. METHODS: Experiments were designed to replicate practices by people who inject drugs and include routinely used injection equipment. HCV stability in water was assessed by inoculation of bottled water with HCV. Viral association with containers was investigated by filling the containers with water, inoculating the water with HCV, emptying the water, and refilling the container with fresh water. Transmission risk associated with drug preparation filters was determined after drawing virus through a filter and incubating the filter to release infectious particles. RESULTS: HCV can survive for up to 3 weeks in bottled water. Water containers present a risk for HCV transmission, as infectious virions remained associated with water containers after washing. Physical properties of the water containers determined the degree of HCV contamination after containers were refilled with water. HCV was also associated with filter material, in which around 10% of the viral inoculum was detectable. CONCLUSIONS: This study demonstrates the potential risk of HCV transmission among injection drug users who share water, filters, and water containers and will help to define public health interventions to reduce HCV transmission.


Assuntos
Infecção Hospitalar/transmissão , Contaminação de Equipamentos , Hepacivirus/fisiologia , Hepatite C/transmissão , Abuso de Substâncias por Via Intravenosa/complicações , Linhagem Celular Tumoral , Infecção Hospitalar/virologia , Filtração/instrumentação , Hepacivirus/isolamento & purificação , Hepatite C/epidemiologia , Hepatite C/virologia , Humanos , Medição de Risco , Água
10.
Transfusion ; 53(5): 1010-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22905868

RESUMO

BACKGROUND: Contamination of blood products with hepatitis C virus (HCV) can cause infections resulting in acute and chronic liver diseases. Pathogen reduction methods such as photodynamic treatment with methylene blue (MB) plus visible light as well as irradiation with shortwave ultraviolet (UVC) light were developed to inactivate viruses and other pathogens in plasma and platelet concentrates (PCs), respectively. So far, their inactivation capacities for HCV have only been tested in inactivation studies using model viruses for HCV. Recently, a HCV infection system for the propagation of infectious HCV in cell culture was developed. STUDY DESIGN AND METHODS: Inactivation studies were performed with cell culture-derived HCV and bovine viral diarrhea virus (BVDV), a model for HCV. Plasma units or PCs were spiked with high titers of cell culture-grown viruses. After treatment of the blood units with MB plus light (Theraflex MB-Plasma system, MacoPharma) or UVC (Theraflex UV-Platelets system, MacoPharma), residual viral infectivity was assessed using sensitive cell culture systems. RESULTS: HCV was sensitive to inactivation by both pathogen reduction procedures. HCV in plasma was efficiently inactivated by MB plus light below the detection limit already by 1/12 of the full light dose. HCV in PCs was inactivated by UVC irradiation with a reduction factor of more than 5 log. BVDV was less sensitive to the two pathogen reduction methods. CONCLUSIONS: Functional assays with human HCV offer an efficient tool to directly assess the inactivation capacity of pathogen reduction procedures. Pathogen reduction technologies such as MB plus light treatment and UVC irradiation have the potential to significantly reduce transfusion-transmitted HCV infections.


Assuntos
Plaquetas/virologia , Segurança do Sangue/métodos , Hepacivirus , Azul de Metileno/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Plasma/virologia , Raios Ultravioleta , Células Cultivadas , Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Vírus da Diarreia Viral Bovina/efeitos da radiação , Hepacivirus/efeitos dos fármacos , Hepacivirus/efeitos da radiação , Humanos , Luz , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação
11.
J Infect Dis ; 204(12): 1830-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22013220

RESUMO

BACKGROUND: Hepatitis C virus (HCV) cross-contamination from inanimate surfaces or objects has been implicated in transmission of HCV in health-care settings and among injection drug users. We established HCV-based carrier and drug transmission assays that simulate practical conditions to study inactivation and survival of HCV on inanimate surfaces. METHODS: Studies were performed with authentic cell culture derived viruses. HCV was dried on steel discs and biocides were tested for their virucidal efficacy against HCV. Infectivity was determined by a limiting dilution assay. HCV stability was analyzed in a carrier assay for several days or in a drug transmission assay using a spoon as cooker. RESULTS: HCV can be dried and recovered efficiently in the carrier assay. The most effective alcohol to inactivate the virus was 1-propanol, and commercially available disinfectants reduced infectivity of HCV to undetectable levels. Viral infectivity on inanimate surfaces was detectable in the presence of serum for up to 5 days, and temperatures of about 65-70°C were required to eliminate infectivity in the drug transmission assay. CONCLUSIONS: These findings are important for assessment of HCV transmission risks and should facilitate the definition of stringent public health interventions to prevent HCV infections.


Assuntos
Desinfetantes/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/transmissão , Viabilidade Microbiana/efeitos dos fármacos , Inativação de Vírus/efeitos dos fármacos , 1-Propanol/farmacologia , 2-Propanol/farmacologia , Contaminação de Equipamentos , Etanol/farmacologia , Glutaral/farmacologia , Hepacivirus/fisiologia , Hepatite C/prevenção & controle , Hepatite C/virologia , Humanos , Peróxidos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Abuso de Substâncias por Via Intravenosa/virologia , Temperatura , Fatores de Tempo
12.
JMIR Public Health Surveill ; 7(12): e30106, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34941551

RESUMO

BACKGROUND: Gaining oversight into the rapidly growing number of mobile health tools for surveillance or outbreak management in Africa has become a challenge. OBJECTIVE: The aim of this study is to map the functional portfolio of mobile health tools used for surveillance or outbreak management of communicable diseases in Africa. METHODS: We conducted a scoping review by combining data from a systematic review of the literature and a telephone survey of experts. We applied the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines by searching for articles published between January 2010 and December 2020. In addition, we used the respondent-driven sampling method and conducted a telephone survey from October 2019 to February 2020 among representatives from national public health institutes from all African countries. We combined the findings and used a hierarchical clustering method to group the tools based on their functionalities (attributes). RESULTS: We identified 30 tools from 1914 publications and 45 responses from 52% (28/54) of African countries. Approximately 13% of the tools (4/30; Surveillance Outbreak Response Management and Analysis System, Go.Data, CommCare, and District Health Information Software 2) covered 93% (14/15) of the identified attributes. Of the 30 tools, 17 (59%) tools managed health event data, 20 (67%) managed case-based data, and 28 (97%) offered a dashboard. Clustering identified 2 exceptional attributes for outbreak management, namely contact follow-up (offered by 8/30, 27%, of the tools) and transmission network visualization (offered by Surveillance Outbreak Response Management and Analysis System and Go.Data). CONCLUSIONS: There is a large range of tools in use; however, most of them do not offer a comprehensive set of attributes, resulting in the need for public health workers having to use multiple tools in parallel. Only 13% (4/30) of the tools cover most of the attributes, including those most relevant for response to the COVID-19 pandemic, such as laboratory interface, contact follow-up, and transmission network visualization.


Assuntos
COVID-19 , Pandemias , África/epidemiologia , Análise por Conglomerados , Humanos , SARS-CoV-2
13.
JMIR Public Health Surveill ; 6(2): e15860, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32347809

RESUMO

BACKGROUND: Digital health is a dynamic field that has been generating a large number of tools; many of these tools do not have the level of maturity required to function in a sustainable model. It is in this context that the concept of global goods maturity is gaining importance. Digital Square developed a global good maturity model (GGMM) for digital health tools, which engages the digital health community to identify areas of investment for global goods. The Surveillance Outbreak Response Management and Analysis System (SORMAS) is an open-source mobile and web application software that we developed to enable health workers to notify health departments about new cases of epidemic-prone diseases, detect outbreaks, and simultaneously manage outbreak response. OBJECTIVE: The objective of this study was to evaluate the maturity of SORMAS using Digital Square's GGMM and to describe the applicability of the GGMM on the use case of SORMAS and identify opportunities for system improvements. METHODS: We evaluated SORMAS using the GGMM version 1.0 indicators to measure its development. SORMAS was scored based on all the GGMM indicator scores. We described how we used the GGMM to guide the development of SORMAS during the study period. GGMM contains 15 subindicators grouped into the following core indicators: (1) global utility, (2) community support, and (3) software maturity. RESULTS: The assessment of SORMAS through the GGMM from November 2017 to October 2019 resulted in full completion of all subscores (10/30, (33%) in 2017; 21/30, (70%) in 2018; and 30/30, (100%) in 2019). SORMAS reached the full score of the GGMM for digital health software tools by accomplishing all 10 points for each of the 3 indicators on global utility, community support, and software maturity. CONCLUSIONS: To our knowledge, SORMAS is the first electronic health tool for disease surveillance, and also the first outbreak response management tool, that has achieved a 100% score. Although some conceptual changes would allow for further improvements to the system, the GGMM already has a robust supportive effect on developing software toward global goods maturity.


Assuntos
Defesa Civil/normas , Vigilância de Evento Sentinela , Defesa Civil/métodos , Surtos de Doenças/estatística & dados numéricos , Saúde Global/estatística & dados numéricos , Humanos , Vigilância da População/métodos
14.
PLoS Negl Trop Dis ; 11(5): e0005645, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28558022

RESUMO

BACKGROUND: Human Ebola infection is characterized by a paralysis of the immune system. A signature of αß T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014-2015 occurred in West Africa, and to assess their association with the clinical outcome. METHODOLOGY/PRINCIPAL FINDINGS: Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome. CONCLUSIONS/SIGNIFICANCES: Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells.


Assuntos
Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/mortalidade , Células Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Biomarcadores/metabolismo , Antígeno CD56/metabolismo , Antígeno CTLA-4/metabolismo , Bases de Dados Factuais , Ebolavirus , Feminino , Citometria de Fluxo , Guiné/epidemiologia , Humanos , Ativação Linfocitária/imunologia , Masculino , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Receptores KIR2DL1/metabolismo , Carga Viral , Receptor fas/metabolismo
15.
Sci Rep ; 6: 36619, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857152

RESUMO

Hepatitis C virus (HCV) and human immunodeficiency virus (HIV-1) transmissions among people who inject drugs (PWID) continue to pose a challenging global health problem. Here, we aimed to analyse a universally applicable inactivation procedure, namely microwave irradiation, as a safe and effective method to reduce the risk of viral transmission. The exposure of HCV from different genotypes to microwave irradiation resulted in a significant reduction of viral infectivity. Furthermore, microwave irradiation reduced viral infectivity of HIV-1 and of HCV/HIV-1 suspensions indicating that this inactivation may be effective at preventing co-infections. To translate microwave irradiation as prevention method to used drug preparation equipment, we could further show that HCV as well as HIV-1 infectivity could be abrogated in syringes and filters. This study demonstrates the power of microwave irradiation for the reduction of viral transmission and establishment of this safety strategy could help reduce the transmission of blood-borne viruses.


Assuntos
Infecções por HIV/prevenção & controle , HIV-1/efeitos da radiação , Hepacivirus/efeitos da radiação , Hepatite C/prevenção & controle , Micro-Ondas , Abuso de Substâncias por Via Intravenosa/complicações , Filtração/instrumentação , Genótipo , Infecções por HIV/complicações , Infecções por HIV/transmissão , HIV-1/patogenicidade , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C/complicações , Hepatite C/transmissão , Humanos
16.
mBio ; 7(6)2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27834208

RESUMO

Hepatitis C virus (HCV) species tropism is incompletely understood. We have previously shown that at the level of entry, human CD81 and occludin (OCLN) comprise the minimal set of human factors needed for viral uptake into murine cells. As an alternative approach to genetic humanization, species barriers can be overcome by adapting HCV to use the murine orthologues of these entry factors. We previously generated a murine tropic HCV (mtHCV or Jc1/mCD81) strain harboring three mutations within the viral envelope proteins that allowed productive entry into mouse cell lines. In this study, we aimed to characterize the ability of mtHCV to enter and infect mouse hepatocytes in vivo and in vitro Using a highly sensitive, Cre-activatable reporter, we demonstrate that mtHCV can enter mouse hepatocytes in vivo in the absence of any human cofactors. Viral entry still relied on expression of mouse CD81 and SCARB1 and was more efficient when mouse CD81 and OCLN were overexpressed. HCV entry could be significantly reduced in the presence of anti-HCV E2 specific antibodies, suggesting that uptake of mtHCV is dependent on viral glycoproteins. Despite mtHCV's ability to enter murine hepatocytes in vivo, we did not observe persistent infection, even in animals with severely blunted type I and III interferon signaling and impaired adaptive immune responses. Altogether, these results establish proof of concept that the barriers limiting HCV species tropism can be overcome by viral adaptation. However, additional viral adaptations will likely be needed to increase the robustness of a murine model system for hepatitis C. IMPORTANCE: At least 150 million individuals are chronically infected with HCV and are at risk of developing serious liver disease. Despite the advent of effective antiviral therapy, the frequency of chronic carriers has only marginally decreased. A major roadblock in developing a vaccine that would prevent transmission is the scarcity of animal models that are susceptible to HCV infection. It is poorly understood why HCV infects only humans and chimpanzees. To develop an animal model for hepatitis C, previous efforts focused on modifying the host environment of mice, for example, to render them more susceptible to HCV infection. Here, we attempted a complementary approach in which a laboratory-derived HCV variant was tested for its ability to infect mice. We demonstrate that this engineered HCV strain can enter mouse liver cells but does not replicate efficiently. Thus, additional adaptations are likely needed to construct a robust animal model for HCV.


Assuntos
Adaptação Fisiológica , Hepacivirus/fisiologia , Hepatite C/virologia , Internalização do Vírus , Imunidade Adaptativa , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Modelos Animais de Doenças , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatócitos/imunologia , Hepatócitos/virologia , Especificidade de Hospedeiro , Humanos , Camundongos , Ocludina/genética , Receptores Depuradores Classe B/genética , Tetraspanina 28/genética , Tropismo Viral
17.
J Neuroimmunol ; 232(1-2): 51-62, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21056916

RESUMO

The C57Bl/6 mouse is the preferred host for the maintenance of gene deletion mutants and holds a unique place in investigations of cytokine/chemokine networks in neuroinflammation. It is also susceptible to experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis (MS)-like disease commonly used to assess potential MS therapies. Investigations of glial reactivity in EAE have revealed hitherto undescribed astroglial responses in this model, characterized by progressively diminishing glial fibrillary acidic protein and aquaporin-4 immunostaining, from early disease. These observations show that astrocyte responses vary with the EAE paradigm and are an important pathological criterion for disease mapping and therapy evaluation.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Gliose/patologia , Animais , Aquaporina 4/biossíntese , Astrócitos/metabolismo , Astrócitos/patologia , Western Blotting , Encefalomielite Autoimune Experimental/metabolismo , Imunofluorescência , Proteína Glial Fibrilar Ácida/biossíntese , Gliose/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Medula Espinal/metabolismo , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA