Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(17): 5007-5026, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35722720

RESUMO

The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.


Assuntos
Microbiota , Pergelissolo , Regiões Árticas , Retroalimentação , Pergelissolo/química , Filogenia , Solo/química
2.
Int J Phytoremediation ; 21(10): 958-968, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016985

RESUMO

Decades of live-fire training exercises have left millions of acres of military training lands contaminated with various munitions constituents such as dinitrotoluene. Those that pose a threat to higher organisms due to their toxicity and mobility in the soil are of particular concern. Plants aid in the biodegradation and phytoextraction of contaminants, and site-specific ecotoxicity determinations are critical to inform effective remediation strategy. These ecotoxicity determinations are lacking in cold-adapted plants and would be very informative for contaminated training lands in cold regions. Therefore, we conducted a phytotoxicity study to determine the median effective concentration (EC50) of 2,4-dinitrotoluene (2,4-DNT) to four native Alaskan plant species in a sub-Arctic soil at two different temperatures. Plant species investigated were white spruce (Picea glauca), field locoweed (Oxytropis campestris), bluejoint grass (Calamagrostis canadensis), and Jacob's ladder (Polemonium pulcherrimum). Seedling emergence, fresh plant mass, and dry plant mass were used to model plant response to 2,4-DNT contamination. White spruce was most tolerant to 2,4-DNT contamination (EC50 = 130.8 mg kg-1) and field locoweed was least tolerant (EC50 = 0.38 mg kg-1). In general, Arctic plant species were more vulnerable to 2,4-DNT when compared to plant types native to temperate or tropical regions.


Assuntos
Dinitrobenzenos , Poluentes do Solo , Biodegradação Ambiental , Solo
3.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37962959

RESUMO

In the Arctic and subarctic, climate change is causing reduced snowpack extent and earlier snowmelt. Shallower snowpack decreases the thermal insulation of underlying soil and results in more freeze-thaw conditions reflective of dynamic air temperatures. The aim of this study was to determine the effect of alternative temperature regimes on overall microbial community structure and rhizosphere recruitment across representatives of three subarctic plant functional groups. We hypothesized that temperature regime would influence rhizosphere community structure more than plant type. Planted microcosms were established using a tree, forb, grass, or no plant control and subjected to either freeze-thaw cycling or static subzero temperatures. Our results showed rhizosphere communities exhibited reduced diversity compared to bulk soils, and were influenced by temperature conditions and to a lesser extent plant type. We found that plants have a core microbiome that is persistent under different winter temperature scenarios but also have temperature regime-specific rhizosphere microbes. Freeze-thaw cycling resulted in greater community shifts from the pre-incubation soils when compared to constant subzero temperature. This finding suggests that wintertime snowpack conditions may be a significant factor for plant-microbe interactions upon spring thaw.


Assuntos
Microbiota , Solo , Solo/química , Temperatura , Rizosfera , Congelamento , Plantas , Microbiologia do Solo
4.
PLoS One ; 15(4): e0232169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353013

RESUMO

Approximately one fourth of the Earth's Northern Hemisphere is underlain by permafrost, earth materials (soil, organic matter, or bedrock), that has been continuously frozen for at least two consecutive years. Numerous studies point to evidence of accelerated climate warming in the Arctic and sub-Arctic where permafrost is located. Changes to permafrost biochemical processes may critically impact ecosystem processes at the landscape scale. Here, we sought to understand how the permafrost metabolome responds to thaw and how this response differs based on location (i.e. chronosequence of permafrost formation constituting diverse permafrost types). We analyzed metabolites from microbial cells originating from Alaskan permafrost. Overall, permafrost thaw induced a shift in microbial metabolic processes. Of note were the dissimilarities in biochemical structure between frozen and thawed samples. The thawed permafrost metabolomes from different locations were highly similar. In the intact permafrost, several metabolites with antagonist properties were identified, illustrating the competitive survival strategy required to survive a frozen state. Interestingly, the intensity of these antagonistic metabolites decreased with warmer temperature, indicating a shift in ecological strategies in thawed permafrost. These findings illustrate the impact of change in temperature and spatial variability as permafrost undergoes thaw, knowledge that will become crucial for predicting permafrost biogeochemical dynamics as the Arctic and Antarctic landscapes continue to warm.


Assuntos
Pergelissolo/química , Pergelissolo/microbiologia , Regiões Antárticas , Regiões Árticas , Ecossistema , Metaboloma/fisiologia , Solo , Microbiologia do Solo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA