Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Biomech Eng ; 136(2): 021019, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24317222

RESUMO

During orthopaedic surgery elevated temperatures due to cutting can result in bone injury, contributing to implant failure or delayed healing. However, how resulting temperatures are experienced throughout bone tissue and cells is unknown. This study uses a combination of experiments (forward-looking infrared (FLIR)) and multiscale computational models to predict thermal elevations in bone tissue and cells. Using multiple regression analysis, analytical expressions are derived allowing a priori prediction of temperature distribution throughout bone with respect to blade geometry, feed-rate, distance from surface, and cooling time. This study offers an insight into bone thermal behavior, informing innovative cutting techniques that reduce cellular thermal damage.


Assuntos
Temperatura Corporal/fisiologia , Ossos do Metatarso/fisiologia , Ossos do Metatarso/cirurgia , Modelos Biológicos , Osteócitos/citologia , Osteócitos/fisiologia , Osteotomia/métodos , Animais , Calcificação Fisiológica/fisiologia , Simulação por Computador , Transferência de Energia/fisiologia , Técnicas In Vitro , Ossos do Metatarso/citologia , Ovinos , Temperatura , Resistência à Tração/fisiologia , Condutividade Térmica
2.
Acta Biomater ; 173: 80-92, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967693

RESUMO

The foreign body response (FBR) to implanted materials culminates in the deposition of a hypo-permeable, collagen rich fibrotic capsule by myofibroblast cells at the implant site. The fibrotic capsule can be deleterious to the function of some medical implants as it can isolate the implant from the host environment. Modulation of fibrotic capsule formation has been achieved using intermittent actuation of drug delivery implants, however the mechanisms underlying this response are not well understood. Here, we use analytical, computational, and in vitro models to understand the response of human myofibroblasts (WPMY-1 stromal cell line) to intermittent actuation using soft robotics and investigate how actuation can alter the secretion of collagen and pro/anti-inflammatory cytokines by these cells. Our findings suggest that there is a mechanical loading threshold that can modulate the fibrotic behaviour of myofibroblasts, by reducing the secretion of soluble collagen, transforming growth factor beta-1 and interleukin 1-beta, and upregulating the anti-inflammatory interleukin-10. By improving our understanding of how cells involved in the FBR respond to mechanical actuation, we can harness this technology to improve functional outcomes for a wide range of implanted medical device applications including drug delivery and cell encapsulation platforms. STATEMENT OF SIGNIFICANCE: A major barrier to the successful clinical translation of many implantable medical devices is the foreign body response (FBR) and resultant deposition of a hypo-permeable fibrotic capsule (FC) around the implant. Perturbation of the implant site using intermittent actuation (IA) of soft-robotic implants has previously been shown to modulate the FBR and reduce FC thickness. However, the mechanisms of action underlying this response were largely unknown. Here, we investigate how IA can alter the activity of myofibroblast cells, and ultimately suggest that there is a mechanical loading threshold within which their fibrotic behaviour can be modulated. These findings can be harnessed to improve functional outcomes for a wide range of medical implants, particularly drug delivery and cell encapsulation devices.


Assuntos
Corpos Estranhos , Reação a Corpo Estranho , Humanos , Reação a Corpo Estranho/patologia , Miofibroblastos/metabolismo , Corpos Estranhos/patologia , Anti-Inflamatórios , Colágeno/farmacologia , Colágeno/metabolismo , Fibrose
3.
Biomater Sci ; 12(11): 2899-2913, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38683198

RESUMO

Implantable medical devices that can facilitate therapy transport to localized sites are being developed for a number of diverse applications, including the treatment of diseases such as diabetes and cancer, and tissue regeneration after myocardial infraction. These implants can take the form of an encapsulation device which encases therapy in the form of drugs, proteins, cells, and bioactive agents, in semi-permeable membranes. Such implants have shown some success but the nature of these devices pose a barrier to the diffusion of vital factors, which is further exacerbated upon implantation due to the foreign body response (FBR). The FBR results in the formation of a dense hypo-permeable fibrous capsule around devices and is a leading cause of failure in many implantable technologies. One potential method for overcoming this diffusion barrier and enhancing therapy transport from the device is to incorporate local fluid flow. In this work, we used experimentally informed inputs to characterize the change in the fibrous capsule over time and quantified how this impacts therapy release from a device using computational methods. Insulin was used as a representative therapy as encapsulation devices for Type 1 diabetes are among the most-well characterised. We then explored how local fluid flow may be used to counteract these diffusion barriers, as well as how a more practical pulsatile flow regimen could be implemented to achieve similar results to continuous fluid flow. The generated model is a versatile tool toward informing future device design through its ability to capture the expected decrease in insulin release over time resulting from the FBR and investigate potential methods to overcome these effects.


Assuntos
Insulina , Insulina/administração & dosagem , Insulina/química , Humanos , Próteses e Implantes , Reação a Corpo Estranho , Difusão
4.
Sci Robot ; 8(81): eabq4821, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647382

RESUMO

The foreign body response impedes the function and longevity of implantable drug delivery devices. As a dense fibrotic capsule forms, integration of the device with the host tissue becomes compromised, ultimately resulting in device seclusion and treatment failure. We present FibroSensing Dynamic Soft Reservoir (FSDSR), an implantable drug delivery device capable of monitoring fibrotic capsule formation and overcoming its effects via soft robotic actuations. Occlusion of the FSDSR porous membrane was monitored over 7 days in a rodent model using electrochemical impedance spectroscopy. The electrical resistance of the fibrotic capsule correlated to its increase in thickness and volume. Our FibroSensing membrane showed great sensitivity in detecting changes at the abiotic/biotic interface, such as collagen deposition and myofibroblast proliferation. The potential of the FSDSR to overcome fibrotic capsule formation and maintain constant drug dosing over time was demonstrated in silico and in vitro. Controlled closed loop release of methylene blue into agarose gels (with a comparable fold change in permeability relating to 7 and 28 days in vivo) was achieved by adjusting the magnitude and frequency of pneumatic actuations after impedance measurements by the FibroSensing membrane. By sensing fibrotic capsule formation in vivo, the FSDSR will be capable of probing and adapting to the foreign body response through dynamic actuation changes. Informed by real-time sensor signals, this device offers the potential for long-term efficacy and sustained drug dosing, even in the setting of fibrotic capsule formation.


Assuntos
Corpos Estranhos , Robótica , Humanos , Sistemas de Liberação de Medicamentos , Impedância Elétrica , Azul de Metileno
5.
Front Med Technol ; 4: 886458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800467

RESUMO

Endovascular stenting presents a promising approach to treat peripheral artery stenosis. However, a significant proportion of patients require secondary interventions due to complications such as in-stent restenosis and late stent thrombosis. Clinical failure of stents is not only attributed to patient factors but also on endothelial cell (EC) injury response, stent deployment techniques, and stent design. Three-dimensional in vitro bioreactor systems provide a valuable testbed for endovascular device assessment in a controlled environment replicating hemodynamic flow conditions found in vivo. To date, very few studies have verified the design of bioreactors based on applied flow conditions and their impact on wall shear stress, which plays a key role in the development of vascular pathologies. In this study, we develop a computationally informed bioreactor capable of capturing responses of human umbilical vein endothelial cells seeded on silicone tubes subjected to hemodynamic flow conditions and deployment of a self-expanding nitinol stents. Verification of bioreactor design through computational fluid dynamics analysis confirmed the application of pulsatile flow with minimum oscillations. EC responses based on morphology, nitric oxide (NO) release, metabolic activity, and cell count on day 1 and day 4 verified the presence of hemodynamic flow conditions. For the first time, it is also demonstrated that the designed bioreactor is capable of capturing EC responses to stent deployment beyond a 24-hour period with this testbed. A temporal investigation of EC responses to stent implantation from day 1 to day 4 showed significantly lower metabolic activity, EC proliferation, no significant changes to NO levels and EC's aligning locally to edges of stent struts, and random orientation in between the struts. These EC responses were indicative of stent-induced disturbances to local hemodynamics and sustained EC injury response contributing to neointimal growth and development of in-stent restenosis. This study presents a novel computationally informed 3D in vitro testbed to evaluate stent performance in presence of hemodynamic flow conditions found in native peripheral arteries and could help to bridge the gap between the current capabilities of 2D in vitro cell culture models and expensive pre-clinical in vivo models.

6.
Biomater Sci ; 10(14): 3793-3807, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35642617

RESUMO

Three-dimensional bioabsorbable textiles represent a novel technology for the manufacturing of tissue engineering scaffolds. In the present study, 3D bioabsorbable poly(lactic acid) (PLA) spacer fabric scaffolds are fabricated by warp-knitting and their potential for tissue engineering is explored in vitro. Changes in physical properties and mechanical performance with different heat setting treatments are assessed. To characterize the microenvironment experienced by cells in the scaffolds, yarn properties are investigated prior to, and during, hydrolytic degradation. The differences in yarn morphology, thermal properties, infrared spectra, and mechanical properties are investigated and monitored during temperature accelerated in vitro degradation tests in phosphate buffered saline (PBS) solution at 58 °C and pH 7.4 for 55 days. Yarn and textile cytocompatibility are tested to assess the effect of materials employed, manufacturing conditions, post processing and sterilization on cell viability, together with the cytocompatibility of the textile degradation products. Results show that the heat setting process can be used to modify scaffold properties, such as thickness, porosity, pore size and stiffness within the range useful for tissue regeneration. Scaffold degradation rate in physiological conditions is estimated by comparing yarn degradation data with PLA degradation data from literature. This will potentially allow the prediction of scaffold mechanical stability in the long term and thus its suitability for the remodelling of different tissues. Mouse calvaria preosteoblast MC3T3-E1 cells attachment and proliferation are observed on the scaffold over 12 days of in vitro culture by 4',6-diamidino-2-phenylindole (DAPI) fluorescent staining and DNA quantification. The present work shows the potential of spacer fabric scaffolds as a versatile and scalable scaffold fabrication technique, having the ability to create a microenvironment with appropriate physical, mechanical, and degradation properties for 3D tissue engineering. The high control and tunability of spacer fabric properties makes it a promising candidate for the regeneration of different tissues in patient-specific applications.


Assuntos
Poliésteres , Engenharia Tecidual , Animais , Camundongos , Poliésteres/química , Porosidade , Têxteis , Engenharia Tecidual/métodos , Alicerces Teciduais/química
7.
Adv Drug Deliv Rev ; 185: 114280, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405298

RESUMO

Diabetes mellitus refers to a group of metabolic disorders which affect how the body uses glucose impacting approximately 9% of the population worldwide. This review covers the most recent technological advances envisioned to control and/or reverse Type 1 diabetes mellitus (T1DM), many of which will also prove effective in treating the other forms of diabetes mellitus. Current standard therapy for T1DM involves multiple daily glucose measurements and insulin injections. Advances in glucose monitors, hormone delivery systems, and control algorithms generate more autonomous and personalised treatments through hybrid and fully automated closed-loop systems, which significantly reduce hypo- and hyperglycaemic episodes and their subsequent complications. Bi-hormonal systems that co-deliver glucagon or amylin with insulin aim to reduce hypoglycaemic events or increase time spent in target glycaemic range, respectively. Stimuli responsive materials for the controlled delivery of insulin or glucagon are a promising alternative to glucose monitors and insulin pumps. By their self-regulated mechanism, these "smart" drugs modulate their potency, pharmacokinetics and dosing depending on patients' glucose levels. Islet transplantation is a potential cure for T1DM as it restores endogenous insulin and glucagon production, but its use is not yet widespread due to limited islet sources and risks of chronic immunosuppression. New encapsulation strategies that promote angiogenesis and oxygen delivery while protecting islets from recipients' immune response may overcome current limiting factors.


Assuntos
Diabetes Mellitus Tipo 1 , Dispositivos Eletrônicos Vestíveis , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucagon/uso terapêutico , Glucose , Humanos , Insulina/uso terapêutico , Tecnologia
8.
Polymers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432947

RESUMO

Analysing the composition and organisation of the fibrous capsule formed as a result of the Foreign Body Response (FBR) to medical devices, is imperative for medical device improvement and biocompatibility. Typically, analysis is performed using histological techniques which often involve random sampling strategies. This method is excellent for acquiring representative values but can miss the unique spatial distribution of features in 3D, especially when analysing devices used in large animal studies. To overcome this limitation, we demonstrate a non-destructive method for high-resolution large sample imaging of the fibrous capsule surrounding human-sized implanted devices using diffusion tensor imaging (DTI). In this study we analyse the fibrous capsule surrounding two unique macroencapsulation devices that have been implanted in a porcine model for 21 days. DTI is used for 3D visualisation of the microstructural organisation and validated using the standard means of fibrous capsule investigation; histological analysis and qualitative micro computed tomography (microCT) and scanning electron microscopy (SEM) imaging. DTI demonstrated the ability to distinguish microstructural differences in the fibrous capsules surrounding two macroencapsulation devices made from different materials and with different surface topographies. DTI-derived metrics yielded insight into the microstructural organisation of both capsules which was corroborated by microCT, SEM and histology. The non-invasive characterisation of the integration of implants in the body has the potential to positively influence analysis methods in pre-clinical studies and accelerate the clinical translation of novel implantable devices.

9.
Nat Commun ; 13(1): 4496, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922421

RESUMO

Fibrous capsule (FC) formation, secondary to the foreign body response (FBR), impedes molecular transport and is detrimental to the long-term efficacy of implantable drug delivery devices, especially when tunable, temporal control is necessary. We report the development of an implantable mechanotherapeutic drug delivery platform to mitigate and overcome this host immune response using two distinct, yet synergistic soft robotic strategies. Firstly, daily intermittent actuation (cycling at 1 Hz for 5 minutes every 12 hours) preserves long-term, rapid delivery of a model drug (insulin) over 8 weeks of implantation, by mediating local immunomodulation of the cellular FBR and inducing multiphasic temporal FC changes. Secondly, actuation-mediated rapid release of therapy can enhance mass transport and therapeutic effect with tunable, temporal control. In a step towards clinical translation, we utilise a minimally invasive percutaneous approach to implant a scaled-up device in a human cadaveric model. Our soft actuatable platform has potential clinical utility for a variety of indications where transport is affected by fibrosis, such as the management of type 1 diabetes.


Assuntos
Longevidade , Próteses e Implantes , Sistemas de Liberação de Medicamentos , Fibrose , Reação a Corpo Estranho , Humanos
10.
J R Soc Interface ; 18(185): 20210673, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932928

RESUMO

Delivering a clinically impactful cell number is a major design challenge for cell macroencapsulation devices for Type 1 diabetes. It is important to understand the transplant site anatomy to design a device that is practical and that can achieve a sufficient cell dose. We identify the posterior rectus sheath plane as a potential implant site as it is easily accessible, can facilitate longitudinal monitoring of transplants, and can provide nutritive support for cell survival. We have investigated this space using morphomics across a representative patient cohort (642 participants) and have analysed the data in terms of gender, age and BMI. We used a shape optimization process to maximize the volume and identified that elliptical devices achieve a clinically impactful cell dose while meeting device manufacture and delivery requirements. This morphomics framework has the potential to significantly influence the design of future macroencapsulation devices to better suit the needs of patients.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Sobrevivência Celular , Humanos
11.
Adv Sci (Weinh) ; 8(16): e2100820, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34155834

RESUMO

Stem cell derived insulin producing cells or islets have shown promise in reversing Type 1 Diabetes (T1D), yet successful transplantation currently necessitates long-term modulation with immunosuppressant drugs. An alternative approach to avoiding this immune response is to utilize an islet macroencapsulation device, where islets are incorporated into a selectively permeable membrane that can protect the transplanted cells from acute host response, whilst enabling delivery of insulin. These macroencapsulation systems have to meet a number of stringent and challenging design criteria in order to achieve the ultimate goal of reversing T1D. In this progress report, the design considerations and functional requirements of macroencapsulation systems are reviewed, specifically for stem-cell derived islets (SC-islets), highlighting distinct design parameters. Additionally, a perspective on the future for macroencapsulation systems is given, and how incorporating continuous sensing and closed-loop feedback can be transformative in advancing toward an autonomous biohybrid artificial pancreas.


Assuntos
Encapsulamento de Células/métodos , Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Células-Tronco/metabolismo , Animais , Desenho de Equipamento
12.
JVS Vasc Sci ; 2: 13-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34617054

RESUMO

BACKGROUND: Quantitative methods for evaluating microstructure of arterial specimens typically rely on histologic techniques that involve random sampling, which cannot account for the unique spatial distribution of features in three dimensions. METHODS: To overcome this limitation, we demonstrate a nondestructive method for three-dimensional imaging of intact human blood vessels using microcomputed tomography (microCT). Human artery segments were dehydrated and stained in an iodine solution then imaged with a standard laboratory microCT scanner. Image visualization and segmentation was performed using commercially available and open source software. RESULTS: Staining of cadaveric vessels with iodine enabled clear visualization of the arterial wall with microCT, preserved tissue morphology, and generated high-resolution images with a voxel size of 5.4 µm. Various components of the arterial wall were segmented using a combination of manual and automatic thresholding algorithms. CONCLUSIONS: Our approach allows for spatial mapping of human artery tissue samples that can guide targeted histologic analysis of smaller tissue segments, provide geometric data to inform finite element models, quantify degree of atherosclerosis, and help to evaluate the foreign body response to intravascular medical implants. (JVS-Vascular Science 2020;2:13-19.). CLINICAL RELEVANCE: In this article, we describe a powerful technique for whole artery analysis of pathologic human tissue specimens that provides high-resolution spatial detail regarding composition of the blood vessel wall. The protocol described here is a valuable adjunct that can be used as a research tool to inform finite element modeling of arteries, quantify pathologic response (ie, neointimal hyperplasia and vascular calcification), and evaluate the tissue/device interface of implanted medical devices.

13.
Tissue Eng Part C Methods ; 27(10): 515-528, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34541880

RESUMO

Advancements in type 1 diabetes mellitus treatments have vastly improved in recent years. The move toward a bioartificial pancreas and other fully implantable systems could help restore patient's glycemic control. However, the long-term success of implantable medical devices is often hindered by the foreign body response. Fibrous encapsulation "walls off" the implant to the surrounding tissue, impairing its functionality. In this study we aim to examine how streptozotocin-induced diabetes affects fibrous capsule formation and composition surrounding implantable drug delivery devices following subcutaneous implantation in a rodent model. After 2 weeks of implantation, the fibrous capsule surrounding the devices were examined by means of Raman spectroscopy, micro-computed tomography (µCT), and histological analysis. Results revealed no change in mean fibrotic capsule thickness between diabetic and healthy animals as measured by µCT. Macrophage numbers (CCR7 and CD163 positive) remained similar across all groups. True component analysis also showed no quantitative difference in the alpha-smooth muscle actin and extracellular matrix proteins. Although principal component analysis revealed significant secondary structural difference in collagen I in the diabetic group, no evidence indicates an influence on fibrous capsule composition surrounding the device. This study confirms that diabetes did not have an effect on the fibrous capsule thickness or composition surrounding our implantable drug delivery device. Impact Statement Understanding the impact diabetes has on the foreign body response (FBR) to our implanted material is essential for developing an effective drug delivery device. We used several approaches (Raman spectroscopy and micro-computed tomography imaging) to demonstrate a well-rounded understanding of the diabetic impact on the FBR to our devices, which is imperative for its clinical translation.


Assuntos
Diabetes Mellitus , Corpos Estranhos , Animais , Corpos Estranhos/diagnóstico por imagem , Próteses e Implantes , Roedores , Microtomografia por Raio-X
14.
Adv Healthc Mater ; 10(14): e2100229, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34165264

RESUMO

Medical devices, such as silicone-based prostheses designed for soft tissue implantation, often induce a suboptimal foreign-body response which results in a hardened avascular fibrotic capsule around the device, often leading to patient discomfort or implant failure. Here, it is proposed that additive manufacturing techniques can be used to deposit durable coatings with multiscale porosity on soft tissue implant surfaces to promote optimal tissue integration. Specifically, the "liquid rope coil effect", is exploited via direct ink writing, to create a controlled macro open-pore architecture, including over highly curved surfaces, while adapting atomizing spray deposition of a silicone ink to create a microporous texture. The potential to tailor the degree of tissue integration and vascularization using these fabrication techniques is demonstrated through subdermal and submuscular implantation studies in rodent and porcine models respectively, illustrating the implant coating's potential applications in both traditional soft tissue prosthetics and active drug-eluting devices.


Assuntos
Próteses e Implantes , Silicones , Animais , Humanos , Teste de Materiais , Porosidade , Suínos
15.
Pharmaceutics ; 13(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34959358

RESUMO

Macroencapsulation systems have been developed to improve islet cell transplantation but can induce a foreign body response (FBR). The development of neovascularization adjacent to the device is vital for the survival of encapsulated islets and is a limitation for long-term device success. Previously we developed additive manufactured multi-scale porosity implants, which demonstrated a 2.5-fold increase in tissue vascularity and integration surrounding the implant when compared to a non-textured implant. In parallel to this, we have developed poly(ε-caprolactone-PEG-ε-caprolactone)-b-poly(L-lactide) multiblock copolymer microspheres containing VEGF, which exhibited continued release of bioactive VEGF for 4-weeks in vitro. In the present study, we describe the next step towards clinical implementation of an islet macroencapsulation device by combining a multi-scale porosity device with VEGF releasing microspheres in a rodent model to assess prevascularization over a 4-week period. An in vivo estimation of vascular volume showed a significant increase in vascularity (* p = 0.0132) surrounding the +VEGF vs. -VEGF devices, however, histological assessment of blood vessels per area revealed no significant difference. Further histological analysis revealed significant increases in blood vessel stability and maturity (** p = 0.0040) and vessel diameter size (*** p = 0.0002) surrounding the +VEGF devices. We also demonstrate that the addition of VEGF microspheres did not cause a heightened FBR. In conclusion, we demonstrate that the combination of VEGF microspheres with our multi-scale porous macroencapsulation device, can encourage the formation of significantly larger, stable, and mature blood vessels without exacerbating the FBR.

16.
Adv Ther (Weinh) ; 3(11)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33709016

RESUMO

Ovarian cancer is the most lethal gynecological malignancy with a global five-year survival rate of 30-50%. First-line treatment involves cytoreductive surgery and administration of platinum-based small molecules and paclitaxel. These therapies were traditionally administered via intravenous infusion, although intraperitoneal delivery has also been investigated. Initial clinical trials of intraperitoneal administration for ovarian cancer indicated significant improvements in overall survival compared to intravenous delivery, but this result is not consistent across all studies performed. Recently cell-based immunotherapy has been of interest for ovarian cancer. Direct intraperitoneal delivery of cell-based immunotherapies might prompt local immunoregulatory mechanisms to act synergistically with the delivered immunotherapy. Based on this theory, pre-clinical in vivo studies have delivered these cell-based immunotherapies via the intraperitoneal route, with promising results. However, successful intraperitoneal delivery of cell-based immunotherapy and clinical adoption of this technique will depend on overcoming challenges of intraperitoneal delivery and finding the optimal combinations of dose, therapeutic and delivery route. We review the potential advantages and disadvantages of intraperitoneal delivery of cell-based immunotherapy for ovarian cancer and the pre-clinical and clinical work performed so far. Potential advanced delivery strategies, which might improve the efficacy and adoption of intraperitoneal delivery of therapy for ovarian cancer, are also outlined.

17.
Acta Biomater ; 107: 78-90, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32145393

RESUMO

The incorporation of the RGD peptide (arginine-glycine-aspartate) into biomaterials has been proposed to promote cell adhesion to the matrix, which can influence and control cell behaviour and function. While many studies have utilised RGD modified biomaterials for cell delivery, few have examined its effect under the condition of reduced oxygen and nutrients, as found at ischaemic injury sites. Here, we systematically examine the effect of RGD on hMSCs in hyaluronic acid (HA) hydrogel under standard and ischaemic culture conditions, to elucidate under what conditions RGD has beneficial effects over unmodified HA and its effectiveness in improving cell viability. Results demonstrate that under standard culture conditions, RGD significantly increased hMSC spreading and the release of vascular endothelial factor-1 (VEGF) and monocyte chemoattractant factor-1 (MCP-1), compared to unmodified HA hydrogel. As adhesion is known to influence cell survival, we hypothesised that cells in RGD hydrogels would exhibit increased cell viability under ischaemic culture conditions. However, results demonstrate that cell viability and protein release was comparable in both RGD modified and unmodified HA hydrogels. Confocal imaging revealed cellular morphology indicative of weak cell adhesion. Subsequent investigations found that RGD was could exert positive effects on encapsulated cells under ischaemic conditions but only if hMSCs were pre-cultured under standard conditions to allow strong adhesion to RGD before exposure. Together, these results provide novel insight into the value of RGD introduction and suggest that the adhesion of hMSCs to RGD prior to delivery could improve survival and function at ischaemic injury sites. STATEMENT OF SIGNIFICANCE: The development of a biomaterial scaffold capable of maintaining cell viability while promoting cell function is a major research goal in the field of cardiac tissue engineering. This study confirms the suitability of a modified HA hydrogel whereby stem cells in the modified hydrogel showed significantly greater cell spreading and protein secretion compared to cells in the unmodified HA hydrogel. A pre-culture period allowing strong adhesion of the cells to the modified hydrogel was shown to improve cell survival under conditions that mimic the myocardium post-MI. This finding may have a significant impact on the use and timelines of modifications to improve stem cell survival in harsh environments like the injured heart.


Assuntos
Hipóxia Celular/fisiologia , Ácido Hialurônico/química , Hidrogéis/química , Células-Tronco Mesenquimais/fisiologia , Oligopeptídeos/química , Alicerces Teciduais/química , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos
18.
Drug Deliv Transl Res ; 10(2): 440-454, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31691161

RESUMO

The 5-year mortality rate for heart failure borders on 50%. The main cause is an ischaemic cardiac event where blood supply to the tissue is lost and cell death occurs. Over time, this damage spreads and the heart is no longer able to pump efficiently. Increasing vascularisation of the affected area has been shown to reduce patient symptoms. The growth factors required to do this have short half-lives making development of an efficacious therapy difficult. Herein, the angiogenic growth factor Vascular Endothelial Growth Factor (VEGF) is complexed electrostatically with star-shaped or linear polyglutamic acid (PGA) polypeptides. Optimised PGA-VEGF nanomedicines provide VEGF encapsulation of > 99% and facilitate sustained release of VEGF for up to 28 days in vitro. The star-PGA-VEGF nanomedicines are loaded into a percutaneous delivery compliant hyaluronic acid hydrogel. Sustained release of VEGF from the composite nano-in-gel system is evident for up to 35 days and the released VEGF has comparable bioactivity to free, fresh VEGF when tested on both Matrigel® and scratch assays. The final star-PGA-VEGF nanomedicine-loaded hydrogel is biocompatible and provides sustained release of bioactive VEGF. Therefore, we report the development of novel, self-assembling PGA-VEGF nanomedicines and their incorporation into a hyaluronic acid hydrogel that is compatible with medical devices to enable minimally invasive delivery to the heart. The final star-PGA-VEGF nanomedicine-loaded hydrogel is biocompatible and provides sustained release of bioactive VEGF. This formulation provides the basis for optimal spatiotemporal delivery of an angiogenic growth factor to the ischaemic myocardium.


Assuntos
Isquemia Miocárdica/tratamento farmacológico , Ácido Poliglutâmico/química , Fator A de Crescimento do Endotélio Vascular/farmacologia , Administração Cutânea , Preparações de Ação Retardada , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis , Nanopartículas , Eletricidade Estática , Fator A de Crescimento do Endotélio Vascular/química
19.
Adv Healthc Mater ; 9(11): e2000305, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32339411

RESUMO

Regenerative medicine approaches, specifically stem cell technologies, have demonstrated significant potential to treat a diverse array of pathologies. However, such approaches have resulted in a modest clinical benefit, which may be attributed to poor cell retention/survival at the disease site. A delivery system that facilitates regional and repeated delivery to target tissues can provide enhanced clinical efficacy of cell therapies when localized delivery of high doses of cells is required. In this study, a new regenerative reservoir platform (Regenervoir) is described for use in large animal models, with relevance to cardiac, abdominal, and soft tissue pathologies. Regenervoir incorporates multiple novel design features essential for clinical translation, with a focus on scalability, mechanism of delivery, fixation to target tissue, and filling/refilling with a therapeutic cargo, and is demonstrated in an array of clinical applications that are easily translated to human studies. Regenervoir consists of a porous reservoir fabricated from a single material, a flexible thermoplastic polymer, capable of delivering cargo via fill lines to target tissues. A radiopaque shear thinning hydrogel can be delivered to the therapy reservoir and multiple fixation methods (laparoscopic tacks and cyanoacrylate bioadhesive) can be used to secure Regenervoir to target tissues through a minimally invasive approach.


Assuntos
Hidrogéis , Medicina Regenerativa , Animais , Humanos , Modelos Animais , Polímeros , Próteses e Implantes
20.
Drug Deliv Transl Res ; 9(1): 1-13, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30511249

RESUMO

As treatments for myocardial infarction (MI) continue to improve, the population of people suffering from heart failure (HF) is rising significantly. Novel treatment strategies aimed at achieving long-term functional stabilisation and improvement in heart function post MI include the delivery of biomaterial hydrogels and myocardial matrix-based therapies to the left ventricle wall. Individually alginate hydrogels and myocardial matrix-based therapies are at the most advanced stages of commercial/clinical development for this potential treatment option. However, despite these individual successes, the potential synergistic effect gained by combining the two therapies remains unexplored. This study serves as a translational step in evaluating the minimally invasive delivery of dual acting alginate-based hydrogels to the heart. We have successfully developed new production methods for hybrid alginate/extracellular matrix (ECM) hydrogels. We have identified that the high G block alginate/ECM hybrid hydrogel has appropriate rheological and mechanical properties (1.6 KPa storage modulus, 29 KPa compressive modulus and 14 KPa dynamic modulus at day 1) and can be delivered using a minimally invasive delivery device. Furthermore, we have determined that these novel hydrogels are not cytotoxic and are capable of enhancing the metabolic activity of dermal fibroblasts in vitro (p < 0.01). Overall these results suggest that an effective minimally invasive HF treatment option could be achieved by combining alginate and ECM particles.


Assuntos
Alginatos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Matriz Extracelular/química , Insuficiência Cardíaca/terapia , Alginatos/química , Alginatos/uso terapêutico , Animais , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/química , Injeções , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Reologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA