Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(32): 20812-20820, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004095

RESUMO

Transition metal dichalcogenide materials have recently been shown to exhibit a variety of intriguing optical and electronic phenomena. Focusing on the optical properties of semiconducting WS2 nanotubes, we show here that these nanostructures exhibit strong light-matter interaction and form exciton-polaritons. Namely, these nanotubes act as quasi 1-D polaritonic nano-systems and sustain both excitonic features and cavity modes in the visible-near infrared range. This ability to confine light to subwavelength dimensions under ambient conditions is induced by the high refractive index of tungsten disulfide. Using "finite-difference time-domain" (FDTD) simulations we investigate the interactions between the excitons and the cavity mode and their effect on the extinction spectrum of these nanostructures. The results of FDTD simulations agree well with the experimental findings as well as with a phenomenological coupled oscillator model which suggests a high Rabi splitting of ∼280 meV. These findings open up possibilities for developing new concepts in nanotube-based photonic devices.

2.
Nat Commun ; 8(1): 17, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500308

RESUMO

Optical metasurfaces are regular quasi-planar nanopatterns that can apply diverse spatial and spectral transformations to light waves. However, metasurfaces are no longer adjustable after fabrication, and a critical challenge is to realise a technique of tuning their optical properties that is both fast and efficient. We experimentally realise an ultrafast tunable metasurface consisting of subwavelength gallium arsenide nanoparticles supporting Mie-type resonances in the near infrared. Using transient reflectance spectroscopy, we demonstrate a picosecond-scale absolute reflectance modulation of up to 0.35 at the magnetic dipole resonance of the metasurfaces and a spectral shift of the resonance by 30 nm, both achieved at unprecedentedly low pump fluences of less than 400 µJ cm-2. Our findings thereby enable a versatile tool for ultrafast and efficient control of light using light.Metasurfaces are not adjustable after fabrication, and a critical challenge is to realise a technique of tuning their optical properties that is both fast and efficient. Here, Shcherbakov et al. realise an ultrafast tunable metasurface with picosecond-scale large absolute reflectance modulation at low pump fluences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA