Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Anal Chem ; 95(32): 11997-12005, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37505456

RESUMO

An aerosol jet printing-enabled dual-function biosensor for the sensitive detection of pathogens using SARS-CoV-2 RNA as an example has been developed. A CRISPR-Cas13:guide-RNA complex is activated in the presence of a target RNA, leading to the collateral trans-cleavage of ssRNA probes that contain a horseradish peroxidase (HRP) tag. This, in turn, catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by HRP, resulting in a color change and electrochemical signal change. The colorimetric and electrochemical sensing protocol does not require complicated target amplification and probe immobilization and exhibits a detection sensitivity in the femtomolar range. Additionally, our biosensor demonstrates a wide dynamic range of 5 orders of magnitude. This low-cost aerosol inkjet printing technique allows for an amplification-free and integrated dual-function biosensor platform, which operates at physiological temperature and is designed for simple, rapid, and accurate point-of-care (POC) diagnostics in either low-resource settings or hospitals.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , Limite de Detecção , Colorimetria/métodos , RNA Viral , COVID-19/diagnóstico , Aerossóis e Gotículas Respiratórios , Peroxidase do Rábano Silvestre , Técnicas Biossensoriais/métodos
2.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567992

RESUMO

B lymphocytes are the major cellular reservoir in individuals infected with Kaposi's sarcoma-associated herpesvirus (KSHV), and the virus is etiologically linked to two B cell lymphoproliferative disorders. We previously described the MC116 human B cell line as a KSHV-susceptible model to overcome the paradoxical refractoriness of B cell lines to experimental KSHV infection. Here, using monoclonal antibody inhibition and a deletion mutant virus, we demonstrate that the KSHV virion glycoprotein K8.1A is critical for infection of MC116, as well as tonsillar B cells; in contrast, we confirm previous reports on the dispensability of the glycoprotein for infection of primary endothelial cells and other commonly studied non-B cell targets. Surprisingly, we found that the role of K8.1A in B cell infection is independent of its only known biochemical activity of binding to surface heparan sulfate, suggesting the possible involvement of an additional molecular interaction(s). Our finding that K8.1A is a critical determinant for KSHV B cell tropism parallels the importance of proteins encoded by positionally homologous genes for the cell tropism of other gammaherpesviruses.IMPORTANCE Elucidating the molecular mechanisms by which KSHV infects B lymphocytes is critical for understanding how the virus establishes lifelong persistence in infected people, in whom it can cause life-threatening B cell lymphoproliferative disease. Here, we show that K8.1A, a KSHV-encoded glycoprotein on the surfaces of the virus particles, is critical for infection of B cells. This finding stands in marked contrast to previous studies with non-B lymphoid cell types, for which K8.1A is known to be dispensable. We also show that the required function of K8.1A in B cell infection does not involve its binding to cell surface heparan sulfate, the only known biochemical activity of the glycoprotein. The discovery of this critical role of K8.1A in KSHV B cell tropism opens promising new avenues to unravel the complex mechanisms underlying infection and disease caused by this viral human pathogen.


Assuntos
Linfócitos B/metabolismo , Glicoproteínas/metabolismo , Heparitina Sulfato/metabolismo , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/metabolismo , Tropismo/fisiologia , Proteínas Virais/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , Células Endoteliais/metabolismo , Humanos
3.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29925660

RESUMO

Herpes simplex virus (HSV) is an important human pathogen with a high worldwide seroprevalence. HSV enters epithelial cells, the primary site of infection, by a low-pH pathway. HSV glycoprotein B (gB) undergoes low pH-induced conformational changes, which are thought to drive membrane fusion. When neutralized back to physiological pH, these changes become reversible. Here, HSV-infected cells were subjected to short pulses of radiolabeling, followed by immunoprecipitation with a panel of gB monoclonal antibodies (MAbs), demonstrating that gB folds and oligomerizes rapidly and cotranslationally in the endoplasmic reticulum. Full-length gB from transfected cells underwent low-pH-triggered changes in oligomeric conformation in the absence of other viral proteins. MAbs to gB neutralized HSV entry into cells regardless of the pH dependence of the entry pathway, suggesting a conservation of gB function in distinct fusion mechanisms. The combination of heat and acidic pH triggered irreversible changes in the antigenic conformation of the gB fusion domain, while changes in the gB oligomer remained reversible. An elevated temperature alone was not sufficient to induce gB conformational change. Together, these results shed light on the conformation and function of the HSV-1 gB oligomer, which serves as part of the core fusion machinery during viral entry.IMPORTANCE Herpes simplex virus (HSV) causes infection of the mouth, skin, eyes, and genitals and establishes lifelong latency in humans. gB is conserved among all herpesviruses. HSV gB undergoes reversible conformational changes following exposure to acidic pH which are thought to mediate fusion and entry into epithelial cells. Here, we identified cotranslational folding and oligomerization of newly synthesized gB. A panel of antibodies to gB blocked both low-pH and pH-neutral entry of HSV, suggesting conserved conformational changes in gB regardless of cell entry route. Changes in HSV gB conformation were not triggered by increased temperature alone, in contrast to results with EBV gB. Acid pH-induced changes in the oligomeric conformation of gB are related but distinct from pH-triggered changes in gB antigenic conformation. These results highlight critical aspects of the class III fusion protein, gB, and inform strategies to block HSV infection at the level of fusion and entry.


Assuntos
Herpesvirus Humano 1/fisiologia , Concentração de Íons de Hidrogênio , Multimerização Proteica/efeitos dos fármacos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/efeitos da radiação , Humanos , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Temperatura , Proteínas do Envelope Viral/química
4.
J Virol ; 88(3): 1748-57, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24257608

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is causatively linked to two B cell lymphoproliferative disorders, multicentric Castleman's disease and primary effusion lymphoma. Latently infected B cells are a major KSHV reservoir, and virus activation from tonsillar B cells can result in salivary shedding and virus transmission. Paradoxically, human B cells (primary and continuous) are notoriously refractory to infection, thus posing a major obstacle to the study of KSHV in this cell type. By performing a strategic search of human B cell lymphoma lines, we found that MC116 cells were efficiently infected by cell-free KSHV. Upon exposure to recombinant KSHV.219, enhanced green fluorescent protein reporter expression was detected in 17 to 20% of MC116 cells. Latent-phase transcription and protein synthesis were detected by reverse transcription-PCR and detection of latency-associated nuclear antigen expression, respectively, in cell lysates and individual cells. Selection based on the puromycin resistance gene in KSHV.219 yielded cultures with all cells infected. After repeated passaging of the selected KSHV-infected cells without puromycin, latent KSHV was maintained in a small fraction of cells. Infected MC116 cells could be induced into lytic phase with histone deacetylase inhibitors, as is known for latently infected non-B cell lines, and also selectively by the B cell-specific pathway involving B cell receptor cross-linking. Lytic-phase transition was documented by red fluorescent protein reporter expression, late structural glycoprotein (K8.1A, gH) detection, and infectious KSHV production. MC116 cells were CD27(-)/CD10(+), characteristic of transitional B cells. These findings represent an important step in the establishment of an efficient continuous B cell line model to study the biologically relevant steps of KSHV infection. Kaposi's sarcoma-associated herpesvirus (KSHV) causes two serious pathologies of B cells, the antibody-producing cells of the immune system. B cells are a major reservoir for KSHV persistence in the body. Paradoxically, in the laboratory, B cells are extremely difficult to infect with KSHV; this problem greatly hinders scientific analysis of B cell infection. We describe our search for and successful identification of a stable human B cell line that can be efficiently infected by KSHV. Upon infection of these cells, the virus goes into a quiet latent phase, a characteristic feature of many herpesvirus infections. The virus can be triggered to enter an active lytic phase by treatments known to stimulate normal B cell functions. These findings suggest that the new B cell line will be a valuable model in which to study KSHV infection of this major target cell type.


Assuntos
Linfócitos B/virologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Linfócitos B/imunologia , Linhagem Celular , Infecções por Herpesviridae/imunologia , Herpesvirus Humano 8/genética , Humanos , Modelos Biológicos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral
5.
Lab Chip ; 24(1): 47-55, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38019145

RESUMO

CRISPR technology has gained widespread adoption for pathogen detection due to its exceptional sensitivity and specificity. Although recent studies have investigated the potential of high-aspect-ratio microstructures in enhancing biochemical applications, their application in CRISPR-based detection has been relatively rare. In this study, we developed a FRET-based biosensor in combination with high-aspect-ratio microstructures and Cas12a-mediated trans-cleavage for detecting HPV 16 DNA fragments. Remarkably, our results show that micropillars with higher density exhibit superior molecular binding capabilities, leading to a tenfold increase in detection sensitivity. Furthermore, we investigated the effectiveness of two surface chemical treatment methods for enhancing the developed FRET assay. A simple and effective approach was also developed to mitigate bubble generation in microfluidic devices, a crucial issue in biochemical reactions within such devices. Overall, this work introduces a novel approach using micropillars for CRISPR-based viral detection and provides valuable insights into optimizing biochemical reactions within microfluidic devices.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Transferência Ressonante de Energia de Fluorescência , Bioensaio , Dispositivos Lab-On-A-Chip , Tecnologia , Sistemas CRISPR-Cas
6.
bioRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662406

RESUMO

CRISPR technology has gained widespread adoption for pathogen detection due to its exceptional sensitivity and specificity. Although recent studies have investigated the potential of high-aspect-ratio microstructures in enhancing biochemical applications, their application in CRISPR-based detection has been relatively rare. In this study, we developed a FRET-based biosensor in combination with high-aspect-ratio microstructures and Cas12a-mediated trans-cleavage for detecting HPV 16 DNA fragments. Remarkably, our results show that micropillars with higher density exhibit superior molecular binding capabilities, leading to a tenfold increase in detection sensitivity. Furthermore, we investigated the effectiveness of two surface chemical treatment methods for enhancing the developed FRET assay. A simple and effective approach was also developed to mitigate bubble generation in microfluidic devices, a crucial issue in biochemical reactions within such devices. Overall, this work introduces a novel approach using micropillars for CRISPR-based viral detection and provides valuable insights into optimizing biochemical reactions within microfluidic devices.

7.
Adv Mater Interfaces ; 10(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37091050

RESUMO

A novel localized surface plasmon resonance (LSPR) system based on the coupling of gold nanomushrooms (AuNMs) and gold nanoparticles (AuNPs) is developed to enable a significant plasmonic resonant shift. The AuNP size, surface chemistry, and concentration are characterized to maximize the LSPR effect. A 31 nm redshift is achieved when the AuNMs are saturated by the AuNPs. This giant redshift also increases the full width of the spectrum and is explained by the 3D finite-difference time-domain (FDTD) calculation. In addition, this LSPR substrate is packaged in a microfluidic cell and integrated with a CRISPR-Cas13a RNA detection assay for the detection of the SARS-CoV-2 RNA targets. Once activated by the target, the AuNPs are cleaved from linker probes and randomly deposited on the AuNM substrate, demonstrating a large redshift. The novel LSPR chip using AuNP as an indicator is simple, specific, isothermal, and label-free; and thus, provides a new opportunity to achieve the next generation multiplexing and sensitive molecular diagnostic system.

8.
medRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37163082

RESUMO

An aerosol jet printing enabled dual-function biosensor for the sensitive detection of pathogens using SARS-CoV-2 RNA as an example has been developed. A CRISPR-Cas13: guide-RNA complex is activated in the presence of a target RNA, leading to the collateral trans-cleavage of ssRNA probes that contain a horseradish peroxidase (HRP) tag. This, in turn, catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by HRP, resulting in a color change and electrochemical signal change. The colorimetric and electrochemical sensing protocol does not require complicated target amplification and probe immobilization and exhibits a detection sensitivity in the femtomolar range. Additionally, our biosensor demonstrates a wide dynamic range of 5 orders of magnitude. This low-cost aerosol inkjet printing technique allows for an amplification-free and integrated dual-function biosensor platform, which operates at physiological temperature and is designed for simple, rapid, and accurate point-of-care (POC) diagnostics in either low-resource settings or hospitals.

9.
J Virol ; 85(19): 9964-73, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21813610

RESUMO

The cellular requirements for activation of herpesvirus fusion and entry remain poorly understood. Low pH triggers change in the antigenic reactivity of the prefusion form of the herpes simplex virus (HSV) fusion protein gB in virions, both in vitro and during viral entry via endocytosis (S. Dollery et al., J. Virol. 84:3759-3766, 2010). However, the mechanism and magnitude of gB conformational change are not clear. Here we show that the conformation and oligomeric state of gB with mutations in the bipartite fusion loops were similarly altered despite the fusion-inactivating mutations. Together with previous studies, this suggests that fusion loop mutants undergo conformational changes but are defective for fusion because they fail to make productive contact with the outer leaflet of the host target membrane. A direct, reversible effect of low pH on the structure of gB was detected by fluorescence spectroscopy. A soluble form of gB containing cytoplasmic tail sequences (s-gB) was triggered by mildly acidic pH to undergo changes in tryptophan fluorescence emission, hydrophobicity, antigenic conformation, and oligomeric structure and thus resembled the prefusion form of gB in the virion. In contrast, soluble gB730, for which the postfusion crystal structure is known, was only marginally affected by pH using these measures. The results underscore the importance of using a prefusion form of gB to assess the activation and extent of conformation change. Further, acidic pH had little to no effect on the conformation or hydrophobicity of gD or on gD's ability to bind nectin-1 or HVEM receptors. Our results support a model in which endosomal low pH serves as a cellular trigger of fusion by activating conformational changes in the fusion protein gB.


Assuntos
Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Multimerização Proteica/efeitos dos fármacos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Chlorocebus aethiops , Concentração de Íons de Hidrogênio , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica/efeitos dos fármacos , Espectrometria de Fluorescência , Células Vero , Proteínas do Envelope Viral/genética
10.
Adv Mater Technol ; 7(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36338309

RESUMO

A gold nanoparticle (AuNP) labeled CRISPR-Cas13a nucleic acid assay has been developed for sensitive solid-state nanopore sensing. Instead of directly detecting the translocation of RNA through a nanopore, our system utilizes non-covalent conjugates of AuNPs and RNA targets. Upon CRISPR activation, the AuNPs are liberated from the RNA, isolated, and passed through a nanopore sensor. Detection of the AuNPs can be observed as increasing ionic current in the chip. Each AuNP that is detected is enumerated as an event, leading to quantitative of molecular targets. Leveraging the high signal-to-noise ratio enabled by the AuNPs, a detection limit of 50 fM before front-end target amplification is achieved using SARS-CoV-2 RNA segments as a Cas13 target. Furthermore, a dynamic range of six orders of magnitude is demonstrated for quantitative RNA sensing. This simplified AuNP-based CRISPR assay is performed at the physiological temperature without relying on thermal cyclers. In addition, the nanopore reader is similar in size to a smartphone, making the assay system suitable for rapid and portable nucleic acid biomarker detection in either low-resource settings or hospitals.

11.
Vaccines (Basel) ; 10(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35746441

RESUMO

Many microbes of concern to human health remain without vaccines. We have developed a whole-microbe inactivation technology that enables us to rapidly inactivate large quantities of a pathogen while retaining epitopes that were destroyed by previous inactivation methods. The method that we call UVC-MDP inactivation can be used to make whole-cell vaccines with increased potency. We and others are exploring the possibility of using improved irradiation-inactivation technologies to develop whole-cell vaccines for numerous antibiotic-resistant microbes. Here, we apply UVC-MDP to produce candidate MRSA vaccines which we test in a stringent tibia implant model of infection challenged with a virulent MSRA strain. We report high levels of clearance in the model and observe a pattern of protection that correlates with the immunogen protein profile used for vaccination.

12.
Lab Chip ; 22(24): 4849-4859, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36111877

RESUMO

A simple, portable, and low-cost microfluidic system-funnel adapted sensing tube (FAST) is developed as an integrated, power-free, and pipette-free biosensor for viral nucleic acids. This FAST chip consists of four reaction chambers separated by carbon fiber rods, and the reagents in each chamber are transferred and mixed by manually removing the rods. Rather than using electrical heaters, only a hand warmer pouch is used for an isothermal recombinase polymerase amplification (RPA) and CRISPR-Cas12a reaction. The signal produced by the RPA-CRISPR reaction is observed by the naked eye using an inexpensive flashlight as a light source. The FAST chip is fabricated using water-soluble polyvinyl alcohol (PVA) as a sacrificial core, which is simple and environmentally friendly. Using a SARS-CoV-2 fragment as a target, a ∼10 fM (6 × 103 copies per µL) detection limit is achieved. To generalize standard optical readout for individuals without training, a linear kernel algorithm is created, showing an accuracy of ∼100% for identifying both positive and negative samples in FAST. This power-free, pipette-free, disposable, and simple device will be a promising tool for nucleic acid diagnostics in either clinics or low-resource settings.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Microfluídica , Computadores
13.
Front Immunol ; 13: 941010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238282

RESUMO

Acinetobacter baumannii causes multi-system diseases in both nosocomial settings and a pre-disposed general population. The bacterium is not only desiccation-resistant but also notoriously resistant to multiple antibiotics and drugs of last resort including carbapenem, colistin, and sulbactam. The World Health Organization has categorized carbapenem-resistant A. baumannii at the top of its critical pathogen list in a bid to direct urgent countermeasure development. Several early-stage vaccines have shown a range of efficacies in healthy mice, but no vaccine candidates have advanced into clinical trials. Herein, we report our findings that both an ionizing γ-radiation-inactivated and a non-ionizing ultraviolet C-inactivated whole-cell vaccine candidate protects neutropenic mice from pulmonary challenge with virulent AB5075, a particularly pathogenic isolate. In addition, we demonstrate that a humoral response is sufficient for this protection via the passive immunization of neutropenic mice.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/prevenção & controle , Animais , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Humanos , Camundongos , Sulbactam/farmacologia , Sulbactam/uso terapêutico
14.
J Virol ; 84(8): 3759-66, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20147407

RESUMO

Herpesviruses can enter host cells using pH-dependent endocytosis pathways in a cell-specific manner. Envelope glycoprotein B (gB) is conserved among all herpesviruses and is a critical component of the complex that mediates membrane fusion and entry. Here we demonstrate that mildly acidic pH triggers specific conformational changes in herpes simplex virus (HSV) gB. The antigenic structure of gB was specifically altered by exposure to low pH both in vitro and during entry into host cells. The oligomeric conformation of gB was altered at a similar pH range. Exposure to acid pH appeared to convert virion gB into a lower-order oligomer. The detected conformational changes were reversible, similar to those in other class III fusion proteins. Exposure of purified, recombinant gB to mildly acidic pH resulted in similar changes in conformation and caused gB to become more hydrophobic, suggesting that low pH directly affects gB. We propose that intracellular low pH induces alterations in gB conformation that, together with additional triggers such as receptor binding, are essential for virion-cell fusion during herpesviral entry by endocytosis.


Assuntos
Proteínas do Envelope Viral/química , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Chlorocebus aethiops , Concentração de Íons de Hidrogênio , Conformação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Células Vero , Proteínas do Envelope Viral/imunologia
15.
Front Cell Infect Microbiol ; 11: 654396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937098

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) is the causative agent of Kaposi's sarcoma and two B cell lymphoproliferative disorders: primary effusion lymphoma and KSHV-associated multicentric Castleman's disease. These distinct pathologies involve different infected cell types. In Kaposi's sarcoma, the virus is harbored in spindle-like tumor cells of endothelial origin, in contrast with the two pathologies of B cells. These distinctions highlight the importance of elucidating potential differences in the mechanisms of infection for these alternate target cell types and in the properties of virus generated from each. To date there is no available chronically KSHV-infected cell line of endothelial phenotype that can be activated by the viral lytic switch protein to transition from latency to lytic replication and production of infectious virus. To advance these efforts, we engineered a novel KSHV chronically infected derivative of TIME (telomerase immortalized endothelial) cells harboring a previously reported recombinant virus (rKSHV.219) and the viral replication and transcription activator (RTA) gene under the control of a doxycycline-inducible system. The resulting cells (designated iTIME.219) maintained latent virus as indicated by expression of constitutively expressed (eGFP) but not a lytic phase (RFP) reporter gene and can be sustained under long term selection. When exposed to either sodium butyrate or doxycycline, the cells were activated to lytic replication as evidenced by the expression of RFP and KSHV lytic genes and release of large quantities of infectious virus. The identity of the iTIME.219 cells was confirmed both phenotypically (specific antigen expression) and genetically (short tandem repeat analysis), and cell stability was maintained following repeated serial passage. These results suggest the potential utility of the iTime.219 cells in future studies of the KSHV replication in endothelial cells, properties of virus generated from this biologically relevant cell type and mechanisms underlying KSHV tropism and pathogenesis.


Assuntos
Herpesvirus Humano 8 , Linhagem Celular , Células Endoteliais , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , Latência Viral , Liberação de Vírus , Replicação Viral
16.
Vaccines (Basel) ; 9(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514059

RESUMO

Acinetobacter baumannii is a bacterial pathogen that is often multidrug-resistant (MDR) and causes a range of life-threatening illnesses, including pneumonia, septicemia, and wound infections. Some antibiotic treatments can reduce mortality if dosed early enough before an infection progresses, but there are few other treatment options when it comes to MDR-infection. Although several prophylactic strategies have been assessed, no vaccine candidates have advanced to clinical trials or have been approved. Herein, we rapidly produced protective whole-cell immunogens from planktonic and biofilm-like cultures of A. baumannii, strain AB5075 grown using a variety of methods. After selecting a panel of five cultures based on distinct protein profiles, replicative activity was extinguished by exposure to 10 kGy gamma radiation in the presence of a Deinococcus antioxidant complex composed of manganous (Mn2+) ions, a decapeptide, and orthophosphate. Mn2+ antioxidants prevent hydroxylation and carbonylation of irradiated proteins, but do not protect nucleic acids, yielding replication-deficient immunogenic A. baumannii vaccine candidates. Mice were immunized and boosted twice with 1.0 × 107 irradiated bacterial cells and then challenged intranasally with AB5075 using two mouse models. Planktonic cultures grown for 16 h in rich media and biofilm cultures grown in static cultures underneath minimal (M9) media stimulated immunity that led to 80-100% protection.

17.
Virol J ; 7: 352, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21122119

RESUMO

BACKGROUND: The pre-fusion form of the herpes simplex virus (HSV) fusion protein gB undergoes pH-triggered conformational change in vitro and during viral entry (Dollery et al., J. Virol. 84:3759-3766, 2010). The antigenic structure of gB from the fusion-from-without (FFWO) strain of HSV-1, ANG path, resembles wild type gB that has undergone pH-triggered changes. Together, changes in the antigenic and oligomeric conformation of gB correlate with fusion activity. We tested whether the pre-fusion form of FFWO gB undergoes altered conformational change in response to low pH. RESULTS: A pH of 5.5 - 6.0 altered the conformation of Domains I and V of FFWO gB, which together comprise the functional region containing the hydrophobic fusion loops. The ANG path gB oligomer was altered at a similar pH. All changes were reversible. In wild type HSV lacking the UL45 protein, which has been implicated in gB-mediated fusion, gB still underwent pH-triggered changes. ANG path entry was inactivated by pretreatment of virions with low pH. CONCLUSION: The pre-fusion conformation of gB with enhanced fusion activity undergoes alteration in antigenic structure and oligomeric conformation in response to acidic pH. We propose that endosomal pH triggers conformational change in mutant gB with FFWO activity in a manner similar to wild type. Differences apart from this trigger may account for the increased fusion activity of FFWO gB.


Assuntos
Antígenos Virais/química , Antígenos Virais/metabolismo , Herpesvirus Humano 1/química , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Animais , Chlorocebus aethiops , Herpesvirus Humano 1/fisiologia , Concentração de Íons de Hidrogênio , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica , Células Vero
18.
PLoS One ; 15(1): e0228006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999745

RESUMO

A concerted action on the part of international agencies and national governments has resulted in the near-eradication of poliomyelitis. However, both the oral polio vaccine (OPV) and the inactivated polio vaccine (IPV) have deficiencies which make them suboptimal for use after global eradication. OPV is composed of attenuated Sabin strains and stimulates robust immunity, but may revert to neurovirulent forms in the intestine which can be shed and infect susceptible contacts. The majority of IPV products are manufactured using pathogenic strains inactivated with formalin. Upon eradication, the production of large quantities of pathogenic virus will present an increased biosecurity hazard. A logical ideal endgame vaccine would be an inactivated form of an attenuated strain that could afford protective immunity while safely producing larger numbers of doses per unit of virus stock than current vaccines. We report here the development of an ionizing radiation (IR)-inactivated Sabin-based vaccine using a reconstituted Mn-decapeptide (MDP) antioxidant complex derived from the radioresistant bacterium Deinococcus radiodurans. In bacteria, Mn2+-peptide antioxidants protect proteins from oxidative damage caused by extreme radiation exposure. Here we show for the first time, that MDP can protect immunogenic neutralizing epitopes in picornaviruses. MDP protects epitopes in Polio Virus 1 and 2 Sabin strains (PV1-S and PV2-S, respectively), but viral genomic RNA is not protected during supralethal irradiation. IR-inactivated Sabin viruses stimulated equivalent or improved neutralizing antibody responses in Wistar rats compared to the commercially used IPV products. Our approach reduces the biosecurity risk of the current PV vaccine production method by utilizing the Sabin strains instead of the wild type neurovirulent strains. Additionally, the IR-inactivation approach could provide a simpler, faster and less costly process for producing a more immunogenic IPV. Gamma-irradiation is a well-known method of virus inactivation and this vaccine approach could be adapted to any pathogen of interest.


Assuntos
Raios gama , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio Oral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Ensaio de Imunoadsorção Enzimática , Genoma Viral , Células HeLa , Humanos , Estresse Oxidativo , Peptídeos/sangue , Poliovirus/genética , Poliovirus/imunologia , Poliovirus/patogenicidade , Poliovirus/ultraestrutura , Ratos Wistar , Proteínas Virais/metabolismo
19.
Viruses ; 11(11)2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752107

RESUMO

How viruses enter cells is of critical importance to pathogenesis in the host and for treatment strategies. Over the last several years, the herpesvirus field has made numerous and thoroughly fascinating discoveries about the entry of alpha-, beta-, and gamma-herpesviruses, giving rise to knowledge of entry at the amino acid level and the realization that, in some cases, researchers had overlooked whole sets of molecules essential for entry into critical cell types. Herpesviruses come equipped with multiple envelope glycoproteins which have several roles in many aspects of infection. For herpesvirus entry, it is usual that a collective of glycoproteins is involved in attachment to the cell surface, specific interactions then take place between viral glycoproteins and host cell receptors, and then molecular interactions and triggers occur, ultimately leading to viral envelope fusion with the host cell membrane. The fact that there are multiple cell and virus molecules involved with the build-up to fusion enhances the diversity and specificity of target cell types, the cellular entry pathways the virus commandeers, and the final triggers of fusion. This review will examine discoveries relating to how Kaposi's sarcoma-associated herpesvirus (KSHV) encounters and binds to critical cell types, how cells internalize the virus, and how the fusion may occur between the viral membrane and the host cell membrane. Particular focus is given to viral glycoproteins and what is known about their mechanisms of action.


Assuntos
Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Internalização do Vírus , Animais , Suscetibilidade a Doenças , Células Endoteliais/virologia , Humanos , Receptores Virais/metabolismo , Proteínas Virais/metabolismo , Tropismo Viral , Replicação Viral
20.
Virus Res ; 149(1): 115-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20080138

RESUMO

Herpesviruses commandeer distinct cellular pathways to enter target cells. The mechanism by which herpes simplex virus (HSV) selects a pH-dependent, endocytic route or a pH-independent route remains to be elucidated. We investigated the role of the non-glycosylated viral envelope protein UL45 in HSV entry via endocytosis. UL45 plays a role in mediating cell-cell fusion and has been proposed to functionally interact with gB to regulate membrane fusion. Thus, we also probed the impact of UL45 on the structure and function of gB present in virions. A UL45 deletion virus successfully entered cells via low pH, endocytic pathway with wild type kinetics. In the absence or presence of UL45, the antigenic conformation of virion gB appeared unaltered. Antibodies to gB neutralized infection of the UL45-deletion virus and wild type virus to a similar extent, regardless of whether the target cells supported low pH endocytic or non-endocytic entry routes. Lastly, HSV virions were inactivated by low pH regardless of the presence of UL45. The results, together with previous studies, suggest that UL45 plays distinct roles in cell-cell fusion and virus-cell fusion during acid-dependent entry.


Assuntos
Endocitose , Simplexvirus/fisiologia , Proteínas do Envelope Viral/fisiologia , Proteínas Virais/fisiologia , Internalização do Vírus , Animais , Células CHO , Cricetinae , Cricetulus , Deleção de Genes , Concentração de Íons de Hidrogênio , Conformação Proteica , Simplexvirus/genética , Proteínas do Envelope Viral/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA