Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(5): 1201-1216.e19, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031005

RESUMO

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.


Assuntos
Microambiente Celular/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Mitocôndrias/imunologia , Espécies Reativas de Oxigênio/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Microambiente Celular/genética , Ciclo do Ácido Cítrico/genética , Ciclo do Ácido Cítrico/imunologia , Células Dendríticas/patologia , Hexoquinase/genética , Hexoquinase/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/imunologia
3.
Eur J Immunol ; : e2350851, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803021

RESUMO

Stress exposure has been shown to modulate innate and adaptive immune responses. Indeed, stress favors myelopoiesis and monocyte generation and contributes to cardiovascular disease development. As sex hormones regulate innate and adaptive immune responses, we decided to investigate whether stress exposure leads to a different immune response in female and male mice. Our data demonstrated that psychosocial stressinduced neutrophilia in male, but not female mice. Importantly, we identified that B-cell numbers were reduced in female, but not male mice upon exposure to stress. Thus, our study revealed that the stress-induced immune alterations are sex-dependent, and this is an important feature to consider for future investigations.

4.
J Hepatol ; 79(4): 898-909, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37230231

RESUMO

BACKGROUND & AIMS: Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS: We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS: RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS: Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS: Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.


Assuntos
Derivação Gástrica , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Humanos , Derivação Gástrica/métodos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/cirurgia , Transcriptoma , Obesidade/complicações , Colesterol , Homeostase , Inflamação/complicações , Obesidade Mórbida/complicações
5.
Allergy ; 77(9): 2594-2617, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35152450

RESUMO

The immune system interacts with many nominal 'danger' signals, endogenous danger-associated (DAMP), exogenous pathogen (PAMP) and allergen (AAMP)-associated molecular patterns. The immune context under which these are received can promote or prevent immune activating or inflammatory mechanisms and may orchestrate diverse immune responses in allergy and cancer. Each can act either by favouring a respective pathology or by supporting the immune response to confer protective effects, depending on acuity or chronicity. In this Position Paper under the collective term danger signals or DAMPs, PAMPs and AAMPs, we consider their diverse roles in allergy and cancer and the connection between these in AllergoOncology. We focus on their interactions with different immune cells of the innate and adaptive immune system and how these promote immune responses with juxtaposing clinical outcomes in allergy and cancer. While danger signals present potential targets to overcome inflammatory responses in allergy, these may be reconsidered in relation to a history of allergy, chronic inflammation and autoimmunity linked to the risk of developing cancer, and with regard to clinical responses to anti-cancer immune and targeted therapies. Cross-disciplinary insights in AllergoOncology derived from dissecting clinical phenotypes of common danger signal pathways may improve allergy and cancer clinical outcomes.


Assuntos
Hipersensibilidade , Neoplasias , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/etiologia , Hipersensibilidade/terapia , Imunidade , Inflamação , Neoplasias/etiologia , Neoplasias/terapia , Transdução de Sinais
6.
Int J Obes (Lond) ; 45(7): 1607-1617, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33934108

RESUMO

BACKGROUND/OBJECTIVES: Innate lymphoid cells (ILCs) play an important role in the maintenance of immune and metabolic homeostasis in adipose tissue (AT). The crosstalk between AT ILCs and adipocytes and other immune cells coordinates adipocyte differentiation, beiging, glucose metabolism and inflammation. Although the metabolic and homeostatic functions of mouse ILCs have been extensively investigated, little is known about human adipose ILCs and their roles in obesity and insulin resistance (IR). SUBJECTS/METHODS: Here we characterized T and NK cell populations in omental AT (OAT) from women (n = 18) with morbid obesity and varying levels of IR and performed an integrated analysis of metabolic parameters and adipose tissue transcriptomics. RESULTS: In OAT, we found a distinct population of CD56-NKp46+EOMES+ NK cells characterized by expression of cytotoxic molecules, pro-inflammatory cytokines, and markers of cell activation. AT IFNγ+ NK cells, but not CD4, CD8 or γδ T cells, were positively associated with glucose levels, glycated hemoglobin (HbA1c) and IR. AT NK cells were linked to a pro-inflammatory gene expression profile in AT and developed an effector phenotype in response to IL-12 and IL-15. Moreover, integrated transcriptomic analysis revealed a potential implication of AT IFNγ+ NK cells in controlling adipose tissue inflammation, remodeling, and lipid metabolism. CONCLUSIONS: Our results suggest that a distinct IFNγ-producing NK cell subset is involved in metabolic homeostasis in visceral AT in humans with obesity and may be a potential target for therapy of IR.


Assuntos
Hiperglicemia/metabolismo , Resistência à Insulina/fisiologia , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Obesidade Mórbida/metabolismo , Adulto , Células Cultivadas , Feminino , Humanos , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Allergol Int ; 69(2): 232-238, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31928947

RESUMO

BACKGROUND: Eosinophilic chronic rhinosinusitis (ECRS) is a subtype of chronic rhinosinusitis associated with asthma. CD69 is an important marker of activation for eosinophils. But, whether a correlation exist between the CD69 expression on eosinophils and clinical findings is unclear. METHODS: We performed quantitative PCR and/or flow cytometry using tissue and purified eosinophils from the blood and nasal polyps of 12 patients with ECRS and from 8 patients without ECRS (controls). We assessed clinical findings including nasal polyp (NP) scores, sinus CT findings, and pulmonary function test results, and examined their possible association with the CD69 expression. We also performed CD69 cross-linking experiments in mouse eosinophils to investigate the functional role of CD69. RESULTS: Levels of cytokine mRNAs (IL-4, -5, -10, and -13) were significantly higher in purified NP eosinophils and tissues from patients with ECRS than the levels of those in controls. The expressions of major basic protein (MBP), eosinophilic cationic protein (ECP), eosinophilic-derived neurotoxin (EDN), eosinophil peroxidase (EPX) in cytotoxic granules, and CD69 mRNA were significantly higher in purified eosinophils from NPs than in those from blood. We also found a correlation between expression of CD69 and clinical findings. Moreover, we found EPX release from mouse eosinophils following CD69 cross-linking. CONCLUSIONS: These data suggest that increased CD69 expression by eosinophils is not only a biomarker for nasal obstruction and pulmonary dysfunction, but also a potential therapeutic target for patients with ECRS and asthma.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biomarcadores/metabolismo , Eosinofilia/metabolismo , Eosinófilos/imunologia , Lectinas Tipo C/metabolismo , Pólipos Nasais/metabolismo , Rinite/metabolismo , Sinusite/metabolismo , Adulto , Idoso , Células Cultivadas , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Humanos , Pessoa de Meia-Idade , Regulação para Cima
8.
J Hepatol ; 70(5): 963-973, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677458

RESUMO

BACKGROUND & AIMS: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis. METHODS: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific Ppara-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPARα expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters. RESULTS: Both whole body and non-hematopoietic Ppara-deficiency in mice decreased survival upon bacterial infection. Livers of septic Ppara-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPARα impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPARA expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers. CONCLUSION: During sepsis, Ppara-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPARα in hepatocytes plays a key role in the host defense against infection. LAY SUMMARY: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPARα in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes.


Assuntos
Adaptação Fisiológica , Fígado/metabolismo , PPAR alfa/fisiologia , Sepse/metabolismo , Animais , Infecções Bacterianas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL
9.
Gastroenterology ; 154(5): 1449-1464.e20, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29277561

RESUMO

BACKGROUND & AIMS: The innate immune system responds not only to bacterial signals, but also to non-infectious danger-associated molecular patterns that activate the NLRP3 inflammasome complex after tissue injury. Immune functions vary over the course of the day, but it is not clear whether these changes affect the activity of the NLRP3 inflammasome. We investigated whether the core clock component nuclear receptor subfamily 1 group D member 1 (NR1D1, also called Rev-erbα) regulates expression, activity of the NLRP3 inflammasome, and its signaling pathway. METHODS: We collected naïve peritoneal macrophages and plasma, at multiple times of day, from Nr1d1-/- mice and their Nr1d1+/+ littermates (controls) and analyzed expression NLRP3, interleukin 1ß (IL1B, in plasma), and IL18 (in plasma). We also collected bone marrow-derived primary macrophages from these mice. Levels of NR1D1 were knocked down with small hairpin RNAs in human primary macrophages. Bone marrow-derived primary macrophages from mice and human primary macrophages were incubated with lipopolysaccharide (LPS) to induce expression of NLRP3, IL1B, and IL18; cells were incubated with LPS and adenosine triphosphate to activate the NLRP3 complex. We analyzed caspase 1 activity and cytokine secretion. NR1D1 was activated in primary mouse and human macrophages by incubation with SR9009; some of the cells were also incubated with an NLRP3 inhibitor or inhibitors of caspase 1. Nr1d1-/- mice and control mice were given intraperitoneal injections of LPS to induce peritoneal inflammation; plasma samples were isolated and levels of cytokines were measured. Nr1d1-/- mice, control mice, and control mice given injections of SR9009 were given LPS and D-galactosamine to induce fulminant hepatitis and MCC950 to specifically inhibit NLRP3; plasma was collected to measure cytokines and a marker of liver failure (alanine aminotransferase); liver tissues were collected and analyzed by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. RESULTS: In peritoneal macrophages, expression of NLRP3 and activation of its complex varied with time of day (circadian rhythm)-this regulation required NR1D1. Primary macrophages from Nr1d1-/- mice and human macrophages with knockdown of NR1D1 had altered expression patterns of NLRP3, compared to macrophages that expressed NR1D1, and altered patterns of IL1B and 1L18 production. Mice with disruption of Nr1d1 developed more-severe acute peritoneal inflammation and fulminant hepatitis than control mice. Incubation of macrophage with the NR1D1 activator SR9009 reduced expression of NLRP3 and secretion of cytokines. Mice given SR9009 developed less-severe liver failure and had longer survival times than mice given saline (control). CONCLUSIONS: In studies of Nr1d1-/- mice and human macrophages with pharmacologic activation of NR1D1, we found NR1D1 to regulate the timing of NLRP3 expression and production of inflammatory cytokines by macrophages. Activation of NR1D1 reduced the severity of peritoneal inflammation and fulminant hepatitis in mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ritmo Circadiano , Inflamassomos/metabolismo , Falência Hepática Aguda/prevenção & controle , Fígado/metabolismo , Macrófagos Peritoneais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Caspase 1/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Galactosamina , Predisposição Genética para Doença , Inflamassomos/genética , Inflamassomos/imunologia , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Falência Hepática Aguda/imunologia , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Ativação de Macrófagos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Peritonite/imunologia , Peritonite/metabolismo , Peritonite/prevenção & controle , Fenótipo , Pirrolidinas/farmacologia , Interferência de RNA , Índice de Gravidade de Doença , Transdução de Sinais , Tiofenos/farmacologia , Fatores de Tempo , Transfecção
11.
Haematologica ; 108(7): 1726-1728, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727402
14.
J Allergy Clin Immunol ; 140(5): 1364-1377.e2, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28189772

RESUMO

BACKGROUND: Exposure to allergens, such as house dust mite (HDM), through the skin often precedes allergic inflammation in the lung. It was proposed that TH2 sensitization through the skin occurs when skin barrier function is disrupted by, for example, genetic predisposition, mechanical damage, or the enzymatic activity of allergens. OBJECTIVE: We sought to study how HDM applied to unmanipulated skin leads to TH2 sensitization and to study which antigen-presenting cells mediate this process. METHODS: HDM was applied epicutaneously by painting HDM on unmanipulated ear skin or under an occlusive tape. HDM challenge was through the nose. Mouse strains lacking different dendritic cell (DC) populations were used, and 1-DER T cells carrying a transgenic T-cell receptor reactive to Der p 1 allergen were used as a readout for antigen presentation. The TH2-inducing capacity of sorted skin-derived DC subsets was determined by means of adoptive transfer to naive mice. RESULTS: Epicutaneous HDM application led to TH2 sensitization and eosinophilic airway inflammation upon intranasal HDM challenge. Skin sensitization did not require prior skin damage or enzymatic activity within HDM extract, yet was facilitated by applying the allergen under an occlusive tape. Primary proliferation of 1-DER T cells occurred only in the regional skin-draining lymph nodes. Epicutaneous sensitization was found to be driven by 2 variants of interferon regulatory factor 4-dependent dermal type 2 conventional DC subsets and not by epidermal Langerhans cells. CONCLUSION: These findings identify skin type 2 conventional DCs as crucial players in TH2 sensitization to common inhaled allergens that enter the body through the skin and can provoke features of allergic asthma.


Assuntos
Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Fatores Reguladores de Interferon/metabolismo , Células de Langerhans/imunologia , Pele/imunologia , Animais , Apresentação de Antígeno , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Células Cultivadas , Cisteína Endopeptidases/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pyroglyphidae/imunologia , Receptores de Antígenos de Linfócitos T/genética , Células Th2/imunologia
15.
Arterioscler Thromb Vasc Biol ; 36(12): 2324-2333, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27758768

RESUMO

OBJECTIVE: Although initially seemingly paradoxical because of the lack of nucleus, platelets possess many transcription factors that regulate their function through DNA-independent mechanisms. These include the farnesoid X receptor (FXR), a member of the superfamily of ligand-activated transcription factors, that has been identified as a bile acid receptor. In this study, we show that FXR is present in human platelets and FXR ligands, GW4064 and 6α-ethyl-chenodeoxycholic acid, modulate platelet activation nongenomically. APPROACH AND RESULTS: FXR ligands inhibited the activation of platelets in response to stimulation of collagen or thrombin receptors, resulting in diminished intracellular calcium mobilization, secretion, fibrinogen binding, and aggregation. Exposure to FXR ligands also reduced integrin αIIbß3 outside-in signaling and thereby reduced the ability of platelets to spread and to stimulate clot retraction. FXR function in platelets was found to be associated with the modulation of cyclic guanosine monophosphate levels in platelets and associated downstream inhibitory signaling. Platelets from FXR-deficient mice were refractory to the actions of FXR agonists on platelet function and cyclic nucleotide signaling, firmly linking the nongenomic actions of these ligands to the FXR. CONCLUSIONS: This study provides support for the ability of FXR ligands to modulate platelet activation. The atheroprotective effects of GW4064, with its novel antiplatelet effects, indicate FXR as a potential target for the prevention of atherothrombotic disease.


Assuntos
Plaquetas/efeitos dos fármacos , Ácido Quenodesoxicólico/análogos & derivados , Hemostasia/efeitos dos fármacos , Isoxazóis/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Trombose/prevenção & controle , Animais , Plaquetas/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Ácido Quenodesoxicólico/farmacologia , GMP Cíclico/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fibrinogênio/metabolismo , Genótipo , Humanos , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptores Citoplasmáticos e Nucleares/sangue , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Trombose/sangue , Fatores de Tempo
16.
J Allergy Clin Immunol ; 138(5): 1309-1318.e11, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27177781

RESUMO

BACKGROUND: Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). OBJECTIVE: We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. METHODS: Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. RESULTS: HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and TH2 and TH17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1ß levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including TH2 and TH17 infiltration. CONCLUSION: These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s.


Assuntos
Asma/imunologia , Linfócitos/imunologia , Obesidade/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Asma/sangue , Asma/fisiopatologia , Citocinas/imunologia , Dieta Hiperlipídica , Imunidade Inata , Imunoglobulina E/sangue , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/sangue , Obesidade/fisiopatologia , Baço/citologia
17.
J Allergy Clin Immunol ; 135(6): 1625-35.e5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25556996

RESUMO

BACKGROUND: Remodeling of quiescent vessels with increases in permeability, vasodilatation, and edema are hallmarks of inflammatory disorders. Factors involved in this type of remodeling represent potential therapeutic targets. OBJECTIVES: We investigated whether the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) ß/δ, a regulator of metabolism, fibrosis, and skin homeostasis, is involved in regulation of this type of remodeling. METHODS: Wild-type and various Pparb/d mutant mice were used to monitor dermal acute vascular hyperpermeability (AVH) and passive systemic anaphylaxis-induced hypothermia and edema. PPARß/δ-dependent kinase activation and remodeling of endothelial cell-cell junctions were addressed by using human endothelial cells. RESULTS: AVH and dilatation of dermal microvessels stimulated by vascular endothelial growth factor A, histamine, and thrombin are severely compromised in PPARß/δ-deficient mice. Selective deletion of the Pparb/d-encoding gene in endothelial cells in vivo similarly limits dermal AVH and vasodilatation, providing evidence that endothelial PPARß/δ is the major player in regulating acute dermal microvessel remodeling. Furthermore, endothelial PPARß/δ regulatory functions are not restricted to the skin vasculature because its deletion in the endothelium, but not in smooth muscle cells, also leads to reduced systemic anaphylaxis, the most severe form of allergic reaction, in which an acute vascular response plays a key role. PPARß/δ-dependent AVH activation likely involves the activation of mitogen-activated protein kinase and Akt pathways and leads to downstream destabilization of endothelial cell-cell junctions. CONCLUSION: These results unveil not only a novel function of PPARß/δ as a direct regulator of acute vessel permeability and dilatation but also provide evidence that antagonizing PPARß/δ represents an important strategy to consider for moderating diseases with altered endothelial integrity, such as acute inflammatory and allergic disorders.


Assuntos
Anafilaxia/imunologia , Permeabilidade Capilar/imunologia , Células Endoteliais/imunologia , PPAR delta/imunologia , PPAR beta/imunologia , Pele/imunologia , Anafilaxia/genética , Anafilaxia/patologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Edema/genética , Edema/imunologia , Edema/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica , Histamina/farmacologia , Hipotermia/genética , Hipotermia/imunologia , Hipotermia/patologia , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/imunologia , Junções Intercelulares/patologia , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/imunologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , PPAR delta/deficiência , PPAR delta/genética , PPAR beta/deficiência , PPAR beta/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele/patologia , Trombina/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
18.
J Immunol ; 188(1): 103-10, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22124126

RESUMO

The IgE-mediated immune system activation can be redirected to combat tumors. Mouse and human IgE have been shown to provide a potent adjuvant effect in antitumor vaccination, with a crucial role played by FcεRI. This effect results from T cell-mediated adaptive immune response. Modified vaccinia virus Ankara (MVA) has been used to infect IgE-loaded tumor cells. These results led to a shift toward a highly safe protocol employing membrane IgE (mIgE), thus eliminating any possible anaphylactogenicity caused by circulating IgE. Evidence that human mIgE and a truncated version lacking IgE Fabs (tmIgE) bind and activate FcεRI has been fundamental and forms the core of this report. Human tmIgE has been engineered into a recombinant MVA (rMVA-tmIgE), and the expression of tmIgE and its transport to the surface of rMVA-tmIgE-infected cells has been detected by Western blot and cytofluorimetry, respectively. FcεRI activation by tmIgE has been confirmed by the release of ß-hexosaminidase in a cell-to-cell contact assay using human FcεRI-transfected RBL-SX38 cells. The rMVA-tmIgE antitumor vaccination strategy has been investigated in FcεRIα(-/-) human FcεRIα(+) mice, with results indicating a level of protection comparable to that obtained using soluble human IgE tumor cell loading. The rMVA-tmIgE vector represents a device that suits safe IgE-based antitumor vaccines, harboring the possibility to couple tmIgE with other gene insertions that might enhance the antitumor effect, thus bringing the field closer to the clinics.


Assuntos
Vacinas Anticâncer/imunologia , Membrana Celular/imunologia , Imunoglobulina E/imunologia , Neoplasias/imunologia , Vaccinia virus , Animais , Vacinas Anticâncer/biossíntese , Vacinas Anticâncer/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Feminino , Humanos , Imunoglobulina E/biossíntese , Imunoglobulina E/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação
20.
J Am Coll Cardiol ; 83(12): 1163-1176, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38508850

RESUMO

Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide and is associated with a range of adverse clinical outcomes. Accumulating evidence points to inflammatory processes resulting from innate immune responses as a cornerstone in AF pathogenesis. Genetic and epigenetic factors affecting leukocytes have been identified as key modulators of the inflammatory response. Inherited variants in genes encoding proteins involved in the innate immune response have been associated with increased risk for AF recurrence and stroke in AF patients. Furthermore, acquired somatic mutations associated with clonal hematopoiesis of indeterminate potential, leukocyte telomere shortening, and epigenetic age acceleration contribute to increased AF risk. In individuals carrying clonal hematopoiesis of indeterminate potential, myocardial monocyte-derived macrophage shift toward a proinflammatory phenotype may precipitate AF. Further studies are needed to better understand the role of genetic regulation of the native immune response in atrial arrhythmogenesis and its therapeutic potential as a target for personalized medicine.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/genética , Fibrilação Atrial/terapia , Fenótipo , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA