Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373201

RESUMO

Despite their great antioxidant activities, the use of natural phenols as antioxidant additives for polyolefins is limited owing to their weak thermal stability and hydrophilic character. Herein, we report a sustainable chemo-enzymatic synthesis of renewable lipophilic antioxidants specifically designed to overcome these restrictions using naturally occurring ferulic acid (found in lignocellulose) and vegetal oils (i.e., lauric, palmitic, stearic acids, and glycerol) as starting materials. A predictive Hansen and Hildebrand parameters-based approach was used to tailor the polarity of newly designed structures. A specific affinity of Candida antarctica lipase B (CAL-B) towards glycerol was demonstrated and exploited to efficiently synthesized the target compounds in yields ranging from 81 to 87%. Antiradical activity as well as radical scavenging behavior (H atom-donation, kinetics) of these new fully biobased additives were found superior to that of well-established, commercially available fossil-based antioxidants such as Irganox 1010® and Irganox 1076®. Finally, their greater thermal stabilities (302 < Td5% < 311 °C), established using thermal gravimetric analysis, combined with their high solubilities and antioxidant activities, make these novel sustainable phenolics a very attractive alternative to current fossil-based antioxidant additives in polyolefins.


Assuntos
Antioxidantes/química , Lignina/química , Óleos/química , Fenóis/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Hidroxitolueno Butilado/análogos & derivados , Hidroxitolueno Butilado/farmacologia , Candida/enzimologia , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/farmacologia , Esterificação , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Lignina/farmacologia , Lipase/metabolismo , Óleos/metabolismo , Óleos/farmacologia , Fenóis/metabolismo , Fenóis/farmacologia
2.
Biomacromolecules ; 15(12): 4551-60, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25353612

RESUMO

An environmentally friendly and simple method, named SolReact, has been developed for a solvent-free esterification of cellulose nanocrystals (CNC) surface by using two nontoxic carboxylic acids (CA), phenylacetic acid and hydrocinnamic acid. In this process, the carboxylic acids do not only act as grafting agent, but also as solvent media above their melting point. Key is the in situ solvent exchange by water evaporation driving the esterification reaction without drying the CNC. Atomic force microscopy and X-ray diffraction analyses showed no significant change in the CNC dimensions and crystallinity index after this green process. The presence of the grafted carboxylic was characterized by analysis of the "bulk" CNC with elemental analysis, infrared spectroscopy, and (13)C NMR. The ability to tune the surface properties of grafted nanocrystals (CNC-g-CA) was evaluated by X-ray photoelectron spectroscopy analysis. The hydrophobicity behavior of the functionalized CNC was studied through the water contact-angle measurements and vapor adsorption. The functionalization of these bionanoparticles may offer applications in composite manufacturing, where these nanoparticles have limited dispersibility in hydrophobic polymer matrices and as nanoadsorbers due to the presence of phenolic groups attached on the surface.


Assuntos
Ácidos Carboxílicos/química , Celulose/química , Nanopartículas/química , Esterificação , Química Verde , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Polímeros/química , Solventes/química , Espectrofotometria Infravermelho , Propriedades de Superfície , Água/química , Difração de Raios X
3.
Sci Rep ; 14(1): 50, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168534

RESUMO

To enhance PLA gas barrier properties, multilayer designs with highly polar barrier layers, such as nanocelluloses, have shown promising results. However, the properties of these polar layers change with humidity. As a result, we investigated water transport phenomena in PLA films coated with nanometric layers of chitosan and nanocelluloses, utilizing a combination of techniques including dynamic vapor sorption (DVS) and long-term water vapor adsorption-diffusion experiments (back-face measurements) to understand the influence of each layer on the behavior of multilayer films. Surprisingly, nanometric coatings impacted PLA water vapor transport. Chitosan/nanocelluloses layers, representing less than 1 wt.% of the multilayer film, increased the water vapor uptake of the film by 14.6%. The nanometric chitosan coating appeared to have localized effects on PLA structure. Moreover, nanocelluloses coatings displayed varying impacts on sample properties depending on their interactions (hydrogen, ionic bonds) with chitosan. The negatively charged CNF TEMPO coating formed a dense network that demonstrated higher resistance to water sorption and diffusion compared to CNF and CNC coatings. This work also highlights the limitations of conventional water vapor permeability measurements, especially when dealing with materials containing ultrathin nanocelluloses layers. It shows the necessity of considering the synergistic effects between layers to accurately evaluate the transport properties.

4.
Bioresour Technol ; 400: 130670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583679

RESUMO

The incorporation of representative commercial compostable materials into a full-scale open-air windrow composting process in an industrial site using household-separated biowaste was investigated. Two batches out of the same initial biowaste mixture were studied, one as control and the other containing initially 1.28 wt% of certified compostable plastics. No significant differences in the composting process were revealed. Compostable plastics exhibited a 98 wt% mass loss after 4 months, aligning with industrial composting times. The evolution of the morphology of the materials unveiled polymer specific degradation mechanisms. Both Safety requirements for organic farming were met. Ecotoxicity tests showed no adverse effects, agronomic fertilizing and amending quality was high, the materials compost even enhancing barley growth. The ecological impact assessment demonstrated an advantage for composting over incineration for seven of the eight indicators. In conclusion, this study shows the successful integration of compostable materials into industrial composting, upholding product safety and quality.


Assuntos
Compostagem , Compostagem/métodos , Biodegradação Ambiental , Solo/química , Embalagem de Produtos , Indústrias , Meio Ambiente , Hordeum
5.
Carbohydr Polym ; 312: 120761, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059524

RESUMO

Nanocelluloses are promising high gas barrier materials for biobased food packaging, but they must be protected from water to preserve high performance. The respective O2 barrier properties of different types of nanocelluloses were compared (nanofibers (CNF), oxidized nanofibers (CNF TEMPO) and nanocrystals (CNC)). The oxygen barrier performance for all types of nanocelluloses was similarly high. To protect the nanocellulose films from water, a multilayer material architecture was used with poly(lactide) (PLA) on the outside. To achieve this, a biobased tie layer was developed, using Corona treatment and chitosan. This allowed thin film coating with nanocellulose layers between 60 and 440 nm thickness. AFM images treated with Fast Fourier Transform showed the formation of locally-oriented CNC layers on the film. Coated PLA(CNC) films performed better (3.2 × 10-20 m3.m/m2.s.Pa) than PLA(CNF) and PLA(CNF TEMPO) (1.1 × 10-19 at best), because thicker layers could be obtained. The oxygen barrier properties were constant during successive measurements at 0 % RH, 80 % RH and again at 0 % RH. This shows that PLA is sufficiently shielding nanocelluloses from water uptake to keep high performance in an extended range of RH and opens the way to high oxygen barrier films which are biobased and biodegradable.

6.
Polymers (Basel) ; 13(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771326

RESUMO

Polyethylene terephthalate (PET) is the plastic packaging material most widely used to produce bottles intended for contact with food and beverages. However, PET is not inert, and therefore, some chemical compounds present in PET could migrate to food or beverages in contact, leading to safety issues. To evaluate the safety of PET samples, the identification of potential migrants is required. In this work, eight PET samples obtained from the Ecuadorian market at different phases of processing were studied using a well-known methodology based on a solvent extraction followed by gas chromatography-mass spectrometry analysis and overall migration test. Several chemical compounds were identified and categorized as lubricants (carboxylic acids with chain length of C12 to C18), plasticizers (triethyl phosphate, diethyl phthalate), thermal degradation products (p-xylene, benzaldehyde, benzoic acid), antioxidant degradation products (from Irgafos 168 and Irganox), and recycling indicator compounds (limonene, benzophenone, alkanes, and aldehydes). Additionally, overall migration experiments were performed in PET bottles, resulting in values lower than the overall migration limit (10 mg/dm2); however, the presence of some compounds identified in the samples could be related to contamination during manufacturing or to the use of recycled PET-contaminated flakes. In this context, the results obtained in this study could be of great significance to the safety evaluation of PET samples in Ecuador and would allow analyzing the PET recycling processes and avoiding contamination by PET flakes from nonfood containers.

7.
Carbohydr Polym ; 234: 115899, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070519

RESUMO

Cellulose nanocrystals (CNCs) are used to design nanocomposites because of their high aspect ratio and their outstanding mechanical and barrier properties. However, the low compatibility of hydrophilic CNCs with hydrophobic polymers remains a barrier to their use in the nanocomposite field. To improve this compatibility, poly(glycidyl methacrylate) (PGMA) was grafted from CNCs containing α-bromoisobutyryl moieties via surface-initiated atom transfer radical polymerization. The novelty of this research is the use of a reactive epoxy-containing monomer that can serve as a new platform for further modifications or crosslinking. Polymer-grafted CNC-PGMA-Br prepared at different polymerization times were characterized by XRD, DLS, FTIR, XPS and elemental analysis. Approximately 40 % of the polymer at the surface of the CNCs was quantified after only 1 h of polymerization. Finally, nanocomposites prepared with 10 wt% CNC-PGMA-Br as nanofillers in a poly(lactic acid) (PLA) matrix exhibited an improvement in their compatibilization based on SEM observation.


Assuntos
Celulose/química , Compostos de Epóxi/síntese química , Metacrilatos/síntese química , Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Compostos de Epóxi/química , Metacrilatos/química , Tamanho da Partícula , Polimerização , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 12(8): 9953-9965, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32011861

RESUMO

The barrier properties of poly(l-lactide) (PLLA) were investigated in multinanolayer systems, probing the effect of confinement, the compatibility between the confining and the confined polymer, crystal orientation, and amorphous phase properties. The multilayer coextrusion process was used to confine PLLA between two amorphous polymers (polystyrene, PS; and polycarbonate, PC), which have different chemical affinities with PLLA. Confined PLLA layers of approximately 20 nm thickness were obtained. The multinanolayer materials were annealed at different temperatures to obtain PLLA crystallites with distinct polymorphs. PLLA annealed in PC/PLLA films at 120 °C afforded a crystallinity degree up to 65%, and PLLA annealed in PC/PLLA or PS/PLLA films at 85 °C had a crystallinity degree of 45%. WAXS measurements evidenced that the PLLA lamellas between PS layers had a mixed in-plane and on-edge orientation. PLLA lamellas between PC layers were uniquely oriented in-plane. DMA results evidenced a shift of the PC glass transition toward lower temperature, suggesting the possible presence of an interphase. The development of the rigid amorphous fraction (RAF) in the amorphous phase during annealing was impacted by the confiner polymer. The RAF content of semicrystalline PLLA was about 15% in PC/PLLA, whereas it was neglectable in PS/PLLA. The oxygen barrier properties appeared to be governed by RAF content, and no impact of the PLLA polymorph or the crystalline orientation was observed. This study shows that the confinement of PLLA on itself does not impact barrier properties but that the proper choice of the confiner polymer can lead to decrease the phase coupling which creates the RAF. It is the prevention of RAF that decreases permeability.

9.
Front Chem ; 7: 159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972325

RESUMO

One-hundred percent renewable triphenol-GTF-(glycerol trihydroferulate) and novel bisphenols-GDFx-(glycerol dihydroferulate) were prepared from lignocellulose-derived ferulic acid and vegetal oil components (fatty acids and glycerol) using highly selective lipase-catalyzed transesterifications. Estrogenic activity tests revealed no endocrine disruption for GDFx bisphenols. Triethyl-benzyl-ammonium chloride (TEBAC) mediated glycidylation of all bis/triphenols, afforded innocuous bio-based epoxy precursors GDFxEPO and GTF-EPO. GDFxEPO were then cured with conventional and renewable diamines, and some of them in presence of GTF-EPO. Thermo-mechanical analyses (TGA, DSC, and DMA) and degradation studies in acidic aqueous solutions of the resulting epoxy-amine resins showed excellent thermal stabilities (T d5% = 282-310°C), glass transition temperatures (T g ) ranging from 3 to 62°C, tunable tan α, and tunable degradability, respectively. It has been shown that the thermo-mechanical properties, wettability, and degradability of these epoxy-amine resins, can be finely tailored by judiciously selecting the diamine nature, the GTF-EPO content, and the fatty acid chain length.

10.
ACS Omega ; 3(12): 17092-17099, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458329

RESUMO

The kinetic fragility of a glass-forming liquid is an important parameter to describe its molecular mobility. In most polymers, the kinetic fragility index obtained from the glassy state by thermally stimulated depolarization current is lower than the one determined in the liquid-like state by dielectric relaxation spectroscopy, as shown in this work for neat polylactide (PLA). When PLA is plasticized to different extents, the fragility calculated in the liquid-like state progressively decreases, until approaching the value of fragility calculated from the glass, which on the other hand remains constant with plasticization. Using the cooperative rearranging region (CRR) concept, it is shown that the decrease of the fragility in the liquid-like state is concomitant with a decrease of the cooperativity length. By splitting the fragility calculated in the liquid, in two contributions: volume and energetic, respectively, dependent and independent on cooperativity, we observed that the slope of the fragility plot in the glass is equivalent to the energetic contribution of the fragility in the liquid. It is then deduced that the difference between the slopes of the relaxation time dependence calculated in both glass and liquid is an indicator of the cooperative character of the segmental relaxation when transiting from liquid to glass. As the main structural consequence of plasticization lies in the decrease of interchain weak bonds, it is assumed that these bonds drive the size of the CRR. In contrast, the dynamics in the glass are independent on plasticization structural effects.

11.
Carbohydr Polym ; 183: 267-277, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352884

RESUMO

Nanocomposites are an opportunity to increase the performance of polymer membranes by fine-tuning their morphology. In particular, the understanding of the contribution of the polymer matrix/nanofiller interface to the overall transport properties is key to design membranes with tailored selective and adsorptive properties. In that aim, cellulose nanocrystals (CNC)/polylactide (PLA) nanocomposites were fabricated with chemically designed interfaces, which were ensuring the compatibility between the constituents and impacting the mass transport mechanism. A detailed analysis of the mass transport behaviour of different permeants in CNC/PLA nanocomposites was carried out as a function of their chemical affinity to grafted CNC surfaces. Penetrants (O2 and cyclohexane), which were found to slightly interact with the constituents of the nanocomposites, provided information on the small tortuosity effect of CNC on diffusive mass transport. The mass transport of water (highly interacting with CNC) and anisole (interacting only with designed CNC surfaces) exhibited non-Fickian, Case II behaviour. The water vapour caused significant swelling of the CNC, which created a preferential pathway for mass transport. CNC surface grafting could attenuate this phenomenon and decrease the water transport rate. Anisole, an aromatic organic vapour, became reversibly trapped at the specifically designed CNC/PLA interface, but without any swelling or creation of an accelerated pathway. This caused the decrease of the overall mass transport rate. The latter finding could open a way to the creation of materials with specifically designed barrier properties by designing nanocomposites interfaces with specific interactions towards permeants.

12.
Front Chem ; 5: 126, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312930

RESUMO

Antioxidant norbornene-based monomers bearing biobased sterically hindered phenols (SHP)-NDF (norbornene dihydroferulate) and NDS (norbornene dihydrosinapate)-have been successfully prepared through biocatalysis from naturally occurring ferulic and sinapic acids, respectively, in presence of Candida antarctica Lipase B (Cal-B). The ring opening metathesis polymerization (ROMP) of these monomers was investigated according to ruthenium catalyst type (GI) vs. (HGII) and monomer to catalyst molar ratio ([M]/[C]). The co-polymerization of antioxidant functionalized monomer (NDF or NDS) and non-active norbornene (N) has also been performed in order to adjust the number of SHP groups present per weight unit and tune the antioxidant activity of the copolymers. The polydispersity of the resulting copolymers was readily improved by a simple acetone wash to provide antioxidant polymers with well-defined structures. After hydrogenation with p-toluenesulfonylhydrazine (p-TSH), the radical scavenging ability of the resulting saturated polymers was evaluated using α,α-diphenyl-ß-picrylhydrazyl (DPPH) analysis. Results demonstrated that polymers bearing sinapic acid SHP exhibited higher antiradical activity than the polymer bearing ferulic acid SHP. In addition it was also shown that only a small SHP content was needed in the copolymers to exhibit a potent antioxidant activity.

13.
Food Chem ; 236: 120-126, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624080

RESUMO

This work investigated the impact of two homogenization treatments, High Shear (HS) and High Pressure (HP), on the structure and antioxidant activity of chitosan-lignin bio-composite films. Laser light scattering analysis revealed that smaller lignin particles were obtained after HP processing, around 0.6µm, compared to HS treatment, between 2.5 and 5µm. Moreover, these particles were more homogeneously distributed in the chitosan film matrix after HP process, while some aggregates remained after HS treatment, as highlighted by two-photon microscopy. The surface hydrophobicity of the composite films, as measured by water contact angle, increased after the two homogenization treatments. Finally, the antioxidant activity of the composite films was determined using the DPPH· assay. No significant difference in the radical scavenging activity was noticeable, neither after HS nor HP processing. However, a migration of lignin residues from the film to the extraction medium was noticed, particularly for HP process.


Assuntos
Quitosana/química , Lignina/química , Antioxidantes/química , Embalagem de Alimentos , Oxirredução , Água
14.
Talanta ; 147: 569-80, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26592648

RESUMO

Compliance of plastic food contact materials (FCMs) with regulatory specifications in force, requires a better knowledge of their interaction phenomena with food or food simulants in contact. However these migration tests could be very complex, expensive and time-consuming. Therefore, alternative procedures were introduced based on the determination of potential migrants in the initial material, allowing the use of mathematical modeling, worst case scenarios and other alternative approaches, for simple and fast compliance testing. In this work, polylactide (PLA), plasticized with four different plasticizers, was considered as a model plastic formulation. An innovative analytical approach was developed, based on the extraction of qualitative and quantitative information from attenuated total reflectance (ATR) mid-infrared (MIR) spectral fingerprints, using independent components analysis (ICA). Two novel chemometric methods, Random_ICA and ICA_corr_y, were used to determine the optimal number of independent components (ICs). Both qualitative and quantitative information, related to the identity and the quantity of plasticizers in PLA, were retrieved through a direct and fast analytical method, without any prior sample preparations. Through a single qualitative model with 11 ICs, a clear and clean classification of PLA samples was obtained, according to the identity of plasticizers incorporated in their formulations. Moreover, a quantitative model was established for each formulation, correlating proportions estimated by ICA and known concentrations of plasticizers in PLA. High coefficients of determination (higher than 0.96) and recoveries (higher than 95%) proved the good predictability of the proposed models.

15.
J Agric Food Chem ; 50(21): 5947-54, 2002 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-12358464

RESUMO

Size exclusion high-performance liquid chromatography analysis was carried out on wheat gluten-glycerol blends subjected to different heat treatments. The elution profiles were analyzed in order to follow the solubility loss of protein fractions with specific molecular size. Owing to the known biochemical changes involved during the heat denaturation of gluten, a mechanistic mathematical model was developed, which divided the protein denaturation into two distinct reaction steps: (i) reversible change in protein conformation and (ii) protein precipitation through disulfide bonding between initially SDS-soluble and SDS-insoluble reaction partners. Activation energies of gluten unfolding, refolding, and precipitation were calculated with the Arrhenius law to 53.9 kJ x mol(-1), 29.5 kJ x mol(-1), and 172 kJ x mol(-1), respectively. The rate of protein solubility loss decreased as the cross-linking reaction proceeded, which may be attributed to the formation of a three-dimensional network progressively hindering the reaction. The enhanced susceptibility to aggregation of large molecules was assigned to a risen reaction probability due to their higher number of cysteine residues and to the increased percentage of unfolded and thereby activated proteins as complete protein refolding seemed to be an anticooperative process.


Assuntos
Glutens/química , Temperatura Alta , Polímeros/química , Triticum/química , Precipitação Química , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Dissulfetos/química , Cinética , Matemática , Modelos Químicos , Peso Molecular , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Solubilidade , Termodinâmica
16.
Chemosphere ; 54(4): 551-9, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14581057

RESUMO

A large variety of wheat gluten based bioplastics, which were plasticized with glycerol, were subjected to biodegradation. The materials covered the total range available for the biochemical control parameter Fi, which expresses the percentage of aggregated proteins. This quantity can be related to the density of covalent crosslinks in the wheat gluten network, which are induced by technological treatments. The biodegradability tests were performed in liquid medium (modified Sturm test) and in farmland soil. All gluten materials were fully degraded after 36 days in aerobic fermentation and within 50 days in farmland soil. No significant differences were observed between the samples. The mineralization half-life time of 3.8 days in the modified Sturm test situated gluten materials among fast degrading polymers. The tests of microbial inhibition experiments revealed no toxic effects of the modified gluten or of its metabolites. Thus, the protein bulk of wheat gluten materials is non-toxic and fully biodegradable, whatever the technological process applied.


Assuntos
Materiais Biocompatíveis/metabolismo , Glutens/metabolismo , Triticum/química , Materiais Biocompatíveis/química , Biodegradação Ambiental , Carbono/análise , Celulose/metabolismo , Fermentação , Glutens/química , Teste de Materiais , Testes de Sensibilidade Microbiana/métodos , Solo/análise
17.
Food Chem ; 148: 138-46, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24262538

RESUMO

Polylactide (PLA), a biobased polymer, might prove suitable as eco-friendly packaging, if it proves efficient at maintaining food quality. To assess interactions between PLA and food, an oïl in-water model emulsion was formulated containing aroma compounds representing different chemical structure classes (ethyl esters, 2-nonanone, benzaldehyde) at a concentration typically found in foodstuff (100 ppm). To study non-equilibrium effects during food shelf life, the emulsions were stored in a PLA pack (tray and lid). To assess equilibrium effects, PLA was conditioned in vapour contact with the aroma compounds at concentrations comparable to headspace conditions of real foods. PLA/emulsion interactions showed minor oil and aroma compound sorption in the packaging. Among tested aroma compounds, benzaldehyde and ethyl acetate were most sorbed and preferentially into the lid through the emulsion headspace. Equilibrium effects showed synergy of ethyl acetate and benzaldehyde, favouring sorption of additional aroma compounds in PLA. This should be anticipated during the formulation of food products.


Assuntos
Aromatizantes/química , Óleos/química , Poliésteres/química , Água/química , Emulsões/química
18.
Biomacromolecules ; 5(3): 1002-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15132693

RESUMO

Wheat gluten films were subjected to controlled thermomechanical treatments to increase the percentage of aggregated sodium dodecyl sulfate (SDS)-insoluble gluten protein, the aggregation reaction being disulfide bonding. The rheological properties of the films were measured under immersion in water, where wheat gluten films are stable and show only slight swelling. The equilibrium swelling of the gluten films in water decreased with the increase of the percentage of SDS-insoluble protein aggregates, and the frequency the independent shear modulus increased sharply with increasing percentage of SDS-insoluble aggregates. Both findings confirm that disulfide bonding between gluten proteins is the predominant cross-linking reaction in the system. A relationship between shear modulus and aggregated protein compatible with a power law (of exponent 3) suggests the existence of a protein network at a molecular scale. However, the classical Flory-Rehner model failed to describe the relationship between the plateau modulus and the gluten volume fraction (a very drastic increase, compatible with a power law of an exponent of about 14). This result shows that gluten cannot be described as an entangled polymer network. The interpretation of both relationships is a network of mesoscale particles which in turn have a fractal inner structure (with a fractal dimension close to 3).


Assuntos
Glutens/química , Peptídeos/química , Triticum/química , Conformação Proteica , Dodecilsulfato de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA