Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 298(7): 102104, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35679899

RESUMO

The outermost lipid-exposed α-helix (M4) in each of the homologous α, ß, δ, and γ/ε subunits of the muscle nicotinic acetylcholine receptor (nAChR) has previously been proposed to act as a lipid sensor. However, the mechanism by which this sensor would function is not clear. To explore how the M4 α-helix from each subunit in human adult muscle nAChR influences function, and thus explore its putative role in lipid sensing, we functionally characterized alanine mutations at every residue in αM4, ßM4, δM4, and εM4, along with both alanine and deletion mutations in the post-M4 region of each subunit. Although no critical interactions involving residues on M4 or in post-M4 were identified, we found that numerous mutations at the M4-M1/M3 interface altered the agonist-induced response. In addition, homologous mutations in M4 in different subunits were found to have different effects on channel function. The functional effects of multiple mutations either along M4 in one subunit or at homologous positions of M4 in different subunits were also found to be additive. Finally, when characterized in both Xenopus oocytes and human embryonic kidney 293T cells, select αM4 mutations displayed cell-specific phenotypes, possibly because of the different membrane lipid environments. Collectively, our data suggest different functional roles for the M4 α-helix in each heteromeric nAChR subunit and predict that lipid sensing involving M4 occurs primarily through the cumulative interactions at the M4-M1/M3 interface, as opposed to the alteration of specific interactions that are critical to channel function.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Receptores Nicotínicos , Adulto , Alanina , Humanos , Canais Iônicos de Abertura Ativada por Ligante/química , Lipídeos de Membrana/química , Conformação Proteica em alfa-Hélice , Receptores Nicotínicos/metabolismo
2.
J Biol Chem ; 295(32): 11056-11067, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32527728

RESUMO

The activity of the muscle-type Torpedo nicotinic acetylcholine receptor (nAChR) is highly sensitive to lipids, but the underlying mechanisms remain poorly understood. The nAChR transmembrane α-helix, M4, is positioned at the perimeter of each subunit in direct contact with lipids and likely plays a central role in lipid sensing. To gain insight into the mechanisms underlying nAChR lipid sensing, we used homology modeling, coevolutionary analyses, site-directed mutagenesis, and electrophysiology to examine the role of the α-subunit M4 (αM4) in the function of the adult muscle nAChR. Ala substitutions for most αM4 residues, including those in clusters of polar residues at both the N and C termini, and deletion of up to 11 C-terminal residues had little impact on the agonist-induced response. Even Ala substitutions for coevolved pairs of residues at the interface between αM4 and the adjacent helices, αM1 and αM3, had little effect, although some impaired nAChR expression. On the other hand, Ala substitutions for Thr422 and Arg429 caused relatively large losses of function, suggesting functional roles for these specific residues. Ala substitutions for aromatic residues at the αM4-αM1/αM3 interface generally led to gains of function, as previously reported for the prokaryotic homolog, the Erwinia chrysanthemi ligand-gated ion channel (ELIC). The functional effects of individual Ala substitutions in αM4 were found to be additive, although not in a completely independent manner. Our results provide insight into the structural features of αM4 that are important. They also suggest how lipid-dependent changes in αM4 structure ultimately modify nAChR function.


Assuntos
Evolução Biológica , Músculos/metabolismo , Receptores Nicotínicos/metabolismo , Substituição de Aminoácidos , Animais , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico , Lipídeos/análise , Modelos Moleculares , Mutagênese , Conformação Proteica , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Torpedo
3.
Curr Top Membr ; 80: 95-137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863823

RESUMO

Cholesterol is a potent modulator of the nicotinic acetylcholine receptor (nAChR) from Torpedo. Here, we review current understanding of the mechanisms underlying cholesterol-nAChR interactions in the context of increasingly available high-resolution structural and functional data. Cholesterol and other lipids influence function by conformational selection and kinetic mechanisms, stabilizing varying proportions of activatable vs nonactivatable conformations, as well as influencing the rates of transitions between conformational states. In the absence of cholesterol and anionic lipids, the nAChR adopts an uncoupled conformation that binds agonist but does not undergo agonist-induced conformational transitions-unless the nAChR is located in a relatively thick lipid bilayer, such as that found in cholesterol-rich lipid rafts. We highlight different sites of cholesterol action, including the lipid-exposed M4 transmembrane α-helix. Cholesterol and other lipids likely alter function by modulating interactions between M4 and the adjacent transmembrane α-helices, M1 and M3. These same interactions have been implicated in both the folding and trafficking of nAChRs to the cell surface. We evaluate the nature of cholesterol-nAChR interactions, considering the evidence supporting the roles of both direct binding to allosteric sites and cholesterol-induced changes in bulk membrane physical properties.


Assuntos
Colesterol/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Humanos , Receptores Nicotínicos/química
4.
Sci Rep ; 8(1): 3898, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497086

RESUMO

The mechanisms underlying lipid-sensing by membrane proteins is of considerable biological importance. A unifying mechanistic question is how a change in structure at the lipid-protein interface is translated through the transmembrane domain to influence structures critical to protein function. Gating of the nicotinic acetylcholine receptor (nAChR) is sensitive to its lipid environment. To understand how changes at the lipid-protein interface influence gating, we examined how a mutation at position 418 on the lipid-facing surface of the outer most M4 transmembrane α-helix alters the energetic couplings between M4 and the remainder of the transmembrane domain. Human muscle nAChR is sensitive to mutations at position 418, with the Cys-to-Trp mutation resulting in a 16-fold potentiation in function that leads to a congenital myasthenic syndrome. Energetic coupling between M4 and the Cys-loop, a key structure implicated in gating, do not change with C418W. Instead, Trp418 and an adjacent residue couple energetically with residues on the M1 transmembrane α-helix, leading to a reorientation of M1 that stabilizes the open state. We thus identify an allosteric link connecting the lipid-protein interface of the nAChR to altered channel function.


Assuntos
Membrana Celular/fisiologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Regulação Alostérica , Sítio Alostérico/genética , Membrana Celular/metabolismo , Humanos , Ativação do Canal Iônico/fisiologia , Proteínas Ligadas a Lipídeos/fisiologia , Lipídeos/química , Lipídeos/fisiologia , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Receptores Nicotínicos/ultraestrutura , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA