Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Appl Clin Med Phys ; 22(5): 24-35, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33792180

RESUMO

PURPOSE: Two-dimensional (2D) IMRT QA has been widely performed in Radiation Oncology clinic. However, concerns regarding its sensitivity in detecting delivery errors and its clinical meaning have been raised in publications. In this study, a robust methodology of three-dimensional (3D) IMRT QA using fiducial registration and structure-mapping was proposed to acquire organ-specific dose information. METHODS: Computed tomography (CT) markers were placed on the PRESAGE dosimeter as fiducials before CT simulation. Subsequently, the images were transferred to the treatment planning system to create a verification plan for the examined treatment plan. Patient's CT images were registered to the CT images of the dosimeter for structure mapping according to the positions of the fiducials. After irradiation, the 3D dose distribution was read-out by an optical-CT (OCT) scanner with fiducials shown on the OCT dose images. An automatic localization algorithm was developed in MATLAB to register the markers in the OCT images to those in the CT images of the dosimeter. SlicerRT was used to show and analyze the results. Fiducial registration error was acquired by measuring the discrepancies in 20 fiducial registrations, and thus the fiducial localization error and target registration error (TRE) was estimated. RESULTS: Dosimetry comparison between the calculated and measured dose distribution in various forms were presented, including 2D isodose lines comparison, 3D isodose surfaces with patient's anatomical structures, 2D and 3D gamma index, dose volume histogram and 3D view of gamma failing points. From the analysis of 20 fiducial registrations, fiducial registration error was measured to be 0.62 mm and fiducial localization error was calculated to be 0.44 mm. Target registration uncertainty of the proposed methodology was estimated to be within 0.3 mm in the area of dose measurement. CONCLUSIONS: This study proposed a robust methodology of 3D measurement-based IMRT QA for organ-specific dose comparison and demonstrated its clinical feasibility.


Assuntos
Radioterapia de Intensidade Modulada , Algoritmos , Marcadores Fiduciais , Humanos , Radiometria , Tomografia Computadorizada por Raios X
2.
J Appl Clin Med Phys ; 21(3): 167-177, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32100948

RESUMO

PURPOSE: A novel radiochromic PRESAGE sheet (Heuris Inc.) with 3 mm thickness has been developed as a measurement tool for 2D dosimetry. Its inherent ability to conform to irregular surfaces makes this dosimeter advantageous for patient surface dosimetry. This study is a comprehensive investigation into the PRESAGE sheet's dosimetric characteristic, accuracy and its potential use as a dosimeter for clinical applications. METHODS: The characterization of the dosimeter included evaluation of the temporal stability of the dose linearity, reproducibility, measurement uncertainties, dose rate, energy, temperature and angular dependence, lateral response artifacts, percent depth dose curve, and 2D dose measurement. Dose distribution measurements were acquired for regular square fields on a flat and irregular surface and an irregular modulated field on the smooth surface. All measurements were performed using an Epson 11000XL high-resolution scanner. RESULTS: The examined dosimeters exhibit stable linear response, standard error of repeated measurements within 2%, negligible dose rate, energy, and angular dependence. The same linear dose response was measured while the dosimeter was in contact with a heated water surface. Gamma test and histogram analysis of the dose difference between PRESAGE and EBT3 film, PRESAGE and the treatment planning system (TPS) were used to evaluate the measured dose distributions. The PRESAGE sheet dose distributions showed good agreement with EBT3 film and TPS. A discrepancy smaller than the statistical error of the two dosimeters was reported. CONCLUSIONS: This study established a full dosimetric characterization of the PRESAGE sheets with the purpose of laying the foundation for future clinical uses. The results presented here for the comparison of this novel dosimeter with those currently in use reinforce the possibility of using this dosimeter as an alternative for irregular surface dose measurements.


Assuntos
Dosimetria Fotográfica/métodos , Imagens de Fantasmas , Radiografia Torácica/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Doses de Radiação , Radioterapia de Intensidade Modulada/métodos
3.
PLoS One ; 12(12): e0190081, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29272297

RESUMO

BACKGROUND: Brain connectivity in autism spectrum disorders (ASD) has proven difficult to characterize due to the heterogeneous nature of the spectrum. Connectivity in the brain occurs in a complex, multilevel and multi-temporal manner, driving the fluctuations observed in local oxygen demand. These fluctuations can be characterized as fractals, as they auto-correlate at different time scales. In this study, we propose a model-free complexity analysis based on the fractal dimension of the rs-BOLD signal, acquired with magnetic resonance imaging. The fractal dimension can be interpreted as measure of signal complexity and connectivity. Previous studies have suggested that reduction in signal complexity can be associated with disease. Therefore, we hypothesized that a detectable difference in rs-BOLD signal complexity could be observed between ASD patients and Controls. METHODS AND FINDINGS: Anatomical and functional data from fifty-five subjects with ASD (12.7 ± 2.4 y/o) and 55 age-matched (14.1 ± 3.1 y/o) healthy controls were accessed through the NITRC database and the ABIDE project. Subjects were scanned using a 3T GE Signa MRI and a 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD (TE/TR = 30/2000ms) where 300 time points were acquired. Motion correction was performed on the functional data and anatomical and functional images were aligned and spatially warped to the N27 standard brain atlas. Fractal analysis, performed on a grey matter mask, was done by estimating the Hurst exponent in the frequency domain using a power spectral density approach and refining the estimation in the time domain with de-trended fluctuation analysis and signal summation conversion methods. Voxel-wise fractal dimension (FD) was calculated for every subject in the control group and in the ASD group to create ROI-based Z-scores for the ASD patients. Voxel-wise validation of FD normality across controls was confirmed, and non-Gaussian voxels were eliminated from subsequent analysis. To maintain a 95% confidence level, only regions where Z-score values were at least 2 standard deviations away from the mean (i.e. where |Z| > 2.0) were included in the analysis. We found that the main regions, where signal complexity significantly decreased among ASD patients, were the amygdala (p = 0.001), the vermis (p = 0.02), the basal ganglia (p = 0.01) and the hippocampus (p = 0.02). No regions reported significant increase in signal complexity in this study. Our findings were correlated with ADIR and ADOS assessment tools, reporting the highest correlation with the ADOS metrics. CONCLUSIONS: Brain connectivity is best modeled as a complex system. Therefore, a measure of complexity as the fractal dimension of fluctuations in brain oxygen demand and utilization could provide important information about connectivity issues in ASD. Moreover, this technique can be used in the characterization of a single subject, with respect to controls, without the need for group analysis. Our novel approach provides an ideal avenue for personalized diagnostics, thus providing unique patient specific assessment that could help in individualizing treatments.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Fractais , Imageamento por Ressonância Magnética/métodos , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
PLoS One ; 12(1): e0169647, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28072842

RESUMO

BACKGROUND: Conventional imaging techniques are unable to detect abnormalities in the brain following mild traumatic brain injury (mTBI). Yet patients with mTBI typically show delayed response on neuropsychological evaluation. Because fractal geometry represents complexity, we explored its utility in measuring temporal fluctuations of brain resting state blood oxygen level dependent (rs-BOLD) signal. We hypothesized that there could be a detectable difference in rs-BOLD signal complexity between healthy subjects and mTBI patients based on previous studies that associated reduction in signal complexity with disease. METHODS: Fifteen subjects (13.4 ± 2.3 y/o) and 56 age-matched (13.5 ± 2.34 y/o) healthy controls were scanned using a GE Discovery MR750 3T MRI and 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD (TE/TR = 35/2000ms), acquired over 6 minutes. Motion correction was performed and anatomical and functional images were aligned and spatially warped to the N27 standard atlas. Fractal analysis, performed on grey matter, was done by estimating the Hurst exponent using de-trended fluctuation analysis and signal summation conversion methods. RESULTS AND CONCLUSIONS: Voxel-wise fractal dimension (FD) was calculated for every subject in the control group to generate mean and standard deviation maps for regional Z-score analysis. Voxel-wise validation of FD normality across controls was confirmed, and non-Gaussian voxels (3.05% over the brain) were eliminated from subsequent analysis. For each mTBI patient, regions where Z-score values were at least 2 standard deviations away from the mean (i.e. where |Z| > 2.0) were identified. In individual patients the frequently affected regions were amygdala (p = 0.02), vermis(p = 0.03), caudate head (p = 0.04), hippocampus(p = 0.03), and hypothalamus(p = 0.04), all previously reported as dysfunctional after mTBI, but based on group analysis. It is well known that the brain is best modeled as a complex system. Therefore a measure of complexity using rs-BOLD signal FD could provide an additional method to grade and monitor mTBI. Furthermore, this approach can be personalized thus providing unique patient specific assessment.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Oxigênio/metabolismo , Adolescente , Gasometria , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino
5.
Crit Rev Biomed Eng ; 44(3): 213-225, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28605353

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in the elderly. However, definitive diagnosis of AD is only achievable postmortem and currently relies on clinical neurological evaluation. Magnetic resonance imaging (MRI) can evaluate brain changes typical of AD, including brain atrophy, presence of amyloid ß (Aß) plaques, and functional and biochemical abnormalities. Structural MRI (sMRI) has historically been used to assess the inherent brain atrophy present in AD. However, new techniques have recently emerged that have refined sMRI into a more precise tool to quantify the thickness and volume of AD-sensitive cerebral structures. Aß plaques, a defining pathology of AD, are widely believed to contribute to the progressive cognitive decline in AD, but accurate assessment is only possible on autopsy. In vivo MRI of plaques, although currently limited to mouse models of AD, is a very promising technique. Measuring changes in activation and connectivity in AD-specific regions of the brain can be performed with functional MRI (fMRI). To help distinguish AD from diseases with similar symptoms, magnetic resonance spectroscopy (MRS) can be used to look for differing metabolite concentrations in vivo. Together, these MR techniques, evaluating various brain changes typical of AD, may help to provide a more definitive diagnosis and ease the assessment of the disease over time, noninvasively.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Imageamento por Ressonância Magnética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Animais , Atrofia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Espectroscopia de Ressonância Magnética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA