Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Cell Mol Med ; 28(7): e18225, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506082

RESUMO

Circular RNAs (circRNAs) function as tumour promoters or suppressors in bladder cancer (BLCA) by regulating genes involved in macrophage recruitment and polarization. However, the underlying mechanisms are largely unknown. The aim of this study was to determine the biological role of circLOC729852 in BLCA. CircLOC729852 was upregulated in BLCA tissues and correlated with increased proliferation, migration and epithelial mesenchymal transition (EMT) of BCLA cells. MiR-769-5p was identified as a target for circLOC729852, which can upregulate IL-10 expression by directly binding to and suppressing miR-769-5p. Furthermore, our results indicated that the circLOC729852/miR-769-5p/IL-10 axis modulates autophagy signalling in BLCA cells and promotes the recruitment and M2 polarization of TAMs by activating the JAK2/STAT3 signalling pathway. In addition, circLOC729852 also promoted the growth of BLCA xenografts and M2 macrophage infiltration in vivo. Thus, circLOC729852 functions as an oncogene in BLCA by inducing secretion of IL-10 by the M2 TAMs, which then facilitates tumour cell growth and migration. Taken together, circLOC729852 is a potential diagnostic biomarker and therapeutic target for BLCA.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias da Bexiga Urinária/patologia , Proliferação de Células/genética , Macrófagos/metabolismo
2.
Biomacromolecules ; 25(7): 4317-4328, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38829675

RESUMO

Despite great progress in the hydrogel hemostats and dressings, they generally lack resistant vascular bursting pressure and intrinsic bioactivity to meet arterial massive hemorrhage and proheal wounds. To address the problems, we design a kind of biomimetic and wound microenvironment-modulating PEGylated glycopolypeptide hydrogels that can be easily injected and gelled in ∼10 s. Those glycopolypeptide hydrogels have suitable tissue adhesion of ∼20 kPa, high resistant bursting pressure of ∼150 mmHg, large microporosity of ∼15 µm, and excellent biocompatibility with ∼1% hemolysis ratio and negligible inflammation. They performed better hemostasis in rat liver and rat and rabbit femoral artery bleeding models than Fibrin glue, Gauze, and other hydrogels, achieving fast arterial hemostasis of <20 s and lower blood loss of 5-13%. As confirmed by in vivo wound healing, immunofluorescent imaging, and immunohistochemical and histological analyses, the mannose-modified hydrogels could highly boost the polarization of anti-inflammatory M2 phenotype and downregulate pro-inflammatory tumor necrosis factor-α to relieve inflammation, achieving complete full-thickness healing with thick dermis, dense hair follicles, and 90% collagen deposition. Importantly, this study provides a versatile strategy to construct biomimetic glycopolypeptide hydrogels that can not only resist vascular bursting pressure for arterial massive hemorrhage but also modulate inflammatory microenvironment for wound prohealing.


Assuntos
Hemorragia , Hidrogéis , Polietilenoglicóis , Cicatrização , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Coelhos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Cicatrização/efeitos dos fármacos , Hemorragia/tratamento farmacológico , Ratos Sprague-Dawley , Masculino , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Glicopeptídeos/química , Glicopeptídeos/farmacologia , Artéria Femoral/lesões , Artéria Femoral/efeitos dos fármacos
3.
J Cell Mol Med ; 27(17): 2583-2593, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525479

RESUMO

Previous studies have demonstrated that mitogen-activated protein kinase 11 (MAPK11) functions as an important point of integration in signalling transduction pathways and controlling endocellular processes, including viability of cells, differentiation, proliferation and apoptosis, through the sequence phosphorylation of the substrate protein Ser/Thr kinase protein cascade. Though MAPK 11 plays an important role in various tumours, especially in the invasive and metastatic processes, its expression and molecular mechanism in clear cell renal cell carcinoma (ccRCC) remain unclear. Runt-associated transcription factor 2 (RUNX2), a main transcription factor for osteoblast differentiation and chondrocyte maturation, has high expression in a number of tumours. In this study, the mRNA and protein levels of targeted genes in ccRCC tissues and adjacent tissues are analysed using the Cancer Genome Atlas (TCGA) database and western blotting. The ccRCC cell proliferation was measured with colony formation and EdU assay, and cell migration was examined through transwell assay. The interactive behaviour between proteins was detected with immunoprecipitation. Half-life period of RUNX2 protein was measured with cycloheximide chase assay. The results of the study indicated overexpression of MAPK11 and RUNX2 in ccRCC tissues and cell lines. MAPK11 and RUNX2 promoted the ccRCC cell proliferation and migration. Additionally, physical interaction took place between RUNX2 and P-MAPK11, which functioned to sustain the stability of RUNX2 protein. The high expression of RUNX2 could neutralize the functional degradation in MAPK11. And the outcomes of the study suggest that the P-MAPK11/RUNX2 axis may be used as a potential therapeutic target of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Proteína Quinase 11 Ativada por Mitógeno/genética , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Renais/patologia , Regulação Neoplásica da Expressão Gênica
4.
Biomacromolecules ; 23(6): 2655-2666, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35583462

RESUMO

Owing to having a unique mechanism to kill cancer cells via the membrane accumulation of lipid peroxide (LPO) and the downregulation of glutathione peroxidase-4 (GPX-4), the ferroptosis therapy (FT) of tumors based on the Fenton reaction of iron nanoparticles has been receiving much attention in the past decade; however, there are some hurdles including the uncontrollable release of iron ions, slower kinetics of the intracellular Fenton reaction, and poor efficacy of FT that need to be overcome. Considering cooperative coordination of a multivalent thiol-pendant polypeptide ligand with iron ions, we put forward a facile strategy for constructing the iron-coordinated nanohybrid of methacryloyloxyethyl phosphorylcholine-grafted polycysteine/iron ions/tannic acid (i.e., PCFT), which could deliver a higher concentration of iron ions into cells. The dynamic and unsaturated coordination in PCFT is favorable for the intracellular stimuli-triggered release and fast Fenton reaction to realize efficient FT, while its intrinsic photothermia would boost the Fenton reaction to induce a synergistic effect between FT and photothermal therapy (PTT). Both immunofluorescence analyses of reactive oxygen species (ROS) and LPO confirmed that the intracellular Fenton reaction resulted in efficient FT, during which process the photothermia greatly boosted ferroptosis, and the Western blot assay corroborated that the expression level of GPX-4 was downregulated by FT and highly degraded by the photothermia to induce synergistic PTT-FT in vitro. Excitingly, by a single intravenous dose of PCFT plus one NIR irradiation, in vivo PTT-FT treatment completely eradicated 4T1 tumors without skin scar and tumor recurrence for 16 days, demonstrating prominent antitumor efficacy, as evidenced by the GPX-4, H&E, and TUNEL assays.


Assuntos
Ferroptose , Hipertermia Induzida , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Ferro , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Terapia Fototérmica , Taninos
5.
Biomacromolecules ; 21(12): 5345-5357, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33307698

RESUMO

Efficient therapeuic proteins' delivery into mammalian cells and subcellular transport (e.g., fast escape from endolysosomes into cytoplasm) are two key biological barriers that need to be overcome for antigen-based immunotherapy and related biomedical applications. For those purposes, we designed a novel kind of photoresponsive polypeptide-glycosylated poly(amidoamine) (PAMAM) dendron amphiphiles (PGDAs), and their synthesis, UV-responsive self-assembly, and triggered ovalbumin (OVA) release have been fully investigated. The highly anisotropic PGDA4 with a glycosylated second-generation PAMAM dendron self-assembled into stable polypeptide vesicles (polymersomes) within 20-50 wt % water, which exhibited UV-responsive reassembly, dynamic binding with a lectin of concanavalin A, and an accelerated OVA release in vitro. Moreover, upon 365 nm UV irradiation, the self-assembled polymersomes of those glycopolypeptides were transformed into micellar aggregates in aqueous solution at pH 7.4 but disassembled completely at pH 5. The OVA-loaded polymersomes could efficiently deliver OVA into RAW264.7 cells and achieve enhanced endolysosomes escape upon UV irradiation, as revealed by flow cytometry and confocal laser scanning microscopy (CLSM). Furthermore, the enzyme-linked immunosorbent assay (ELISA) showed that the blank sugar-coated polypeptidosomes activated a high level of tumor necrosis factor α (TNF-α) of 468 pg/mL, playing a better role of immune adjuvant for activating the macrophages. Upon the UV irradiation with a dose of 3 J/cm2, the OVA-loaded polymersomes could further stimulate RAW264.7 and enhance the TNF-α level by about 45%. Consequently, this work provides a versatile platform to construct photosensitive and sugar-coated polymersomes of glycopolypeptides that have potential applications for protein delivery, immune adjuvant, and antigen-based immunotherapy.


Assuntos
Dendrímeros , Animais , Imunidade , Micelas , Ovalbumina , Polietilenoglicóis
6.
Nano Lett ; 19(7): 4362-4370, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199153

RESUMO

Multidrug resistance (MDR) of cancers that results from overexpression of a P-glycoprotein (P-gp) transporter mainly causes chemotherapy (CT) failure and hinders clinical transitions of current polypeptide nanomedicines. Herein, a novel polypeptide nanocomposite PNOC-PDA that integrates heat-sensitive NO gas delivery and photothermal conversion attributes can overcome MDR and maximize CT; meanwhile the optimized CT and intracellular high-concentration NO gas can assist a mild photothermal therapy (PTT) to eradicate cancer cells. The triple therapies produced a superior and synergistic effect on MDR-reversal and killing MCF-7/ADR in vitro, and the P-gp expression level was downregulated to 46%, as confirmed by means of MTT, Western blot, flow cytometry, and confocal laser scanning microscopy. Significantly, by using one intravenous injection of PNOC-PDA/DOX and a single near-infrared irradiation, the triple therapies of mild PTT, NO gas therapy, and CT achieved complete MCF-7/ADR tumor ablation without skin damage, scarring, and tumor recurrence within 30 days. This work provides a versatile method for the fabrication of NIR-responsive polypeptide nanocomposite with intrinsic photothermal conversion and NO-releasing attributes, opening up a new avenue for reversing MDR in tumors.


Assuntos
Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Hipertermia Induzida , Nanocompostos , Neoplasias Experimentais , Óxido Nítrico , Peptídeos , Fototerapia , Animais , Humanos , Raios Infravermelhos , Células MCF-7 , Camundongos , Camundongos Nus , Nanocompostos/química , Nanocompostos/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Óxido Nítrico/química , Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacologia , Peptídeos/química , Peptídeos/farmacologia
7.
Angew Chem Int Ed Engl ; 58(20): 6659-6662, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30835916

RESUMO

The concise total syntheses of (-)-indoxamycins A and B is reported. The chemistry features a seven-step preparation of a highly congested [5.5.6] tricyclic advanced common intermediate from a readily available R-carvone derivative. Key steps involve a Pauson-Khand reaction for the rapid construction of a basic scaffold bearing a quaternary carbon, a copper-catalyzed Michael addition for the introduction of another adjacent all-carbon quaternary stereocenter, and a tandem retro-oxa-Michael addition/1,2-addition/oxa-Michael addition for the installation of a trisubstituted olefin side chain. This synthetic strategy allows for easy access to both enantiomers of this family of natural products and their analogues from cost-effective starting material through straightforward chemical transformations.

8.
Sensors (Basel) ; 18(10)2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275436

RESUMO

The whitecap coverage at the sea surface is affected by the ratio of kinetic energy to potential energy, θ, the wave spectrum width parameter, ρ, and other factors. This paper validates an improved statistical theory for surface whitecap coverage. Based on the theoretical analysis, we find that the whitecap coverage is more sensitive to ρ than to θ, and the improved statistical theory for surface whitecap coverage is suitable in regions of rough winds and waves. The satellite-derived whitecap coverage data in the westerly wind zone is used to validate the improved theory. The comparison between the results from theory and observations displays a better performance from the improved theory relative to the other methods tested.

9.
Sensors (Basel) ; 17(10)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28953218

RESUMO

River islands are sandbars formed by scouring and silting. Their evolution is affected by several factors, among which are runoff and sediment discharge. The spatial-temporal evolution of seven river islands in the Nanjing Section of the Yangtze River of China was examined using TM (Thematic Mapper) and ETM (Enhanced Thematic Mapper)+ images from 1985 to 2015 at five year intervals. The following approaches were applied in this study: the threshold value method, binarization model, image registration, image cropping, convolution and cluster analysis. Annual runoff and sediment discharge data as measured at the Datong hydrological station upstream of Nanjing section were also used to determine the roles and impacts of various factors. The results indicated that: (1) TM/ETM+ images met the criteria of information extraction of river islands; (2) generally, the total area of these islands in this section and their changing rate decreased over time; (3) sediment and river discharge were the most significant factors in island evolution. They directly affect river islands through silting or erosion. Additionally, anthropocentric influences could play increasingly important roles.

10.
Biomacromolecules ; 17(7): 2489-501, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27310705

RESUMO

To integrate cocktail chemotherapy with photothermal therapy into one biocompatible and biodegradable nanocarrier, the plasmonic, lactose-targeted, and dual anticancer drugs-loaded polypeptide composite nanoparticles were for the first time fabricated under mild conditions. The glyco-PEGylated polypeptide micelles that self-assembled from the lactose (LAC) and PEG grafted polycysteine terpolymer were used as templates to generate the plasmonic composite nanoparticles, as mainly characterized by DLS, TEM, SEM, and XPS. These composite nanoparticles showed a broad and strong near-infrared (NIR) absorption at 650-1100 nm and increased the temperature of phosphate buffer solution by 30.1 °C upon a continuous-wave laser irradiation (808 nm, 5 min, 2 W·cm(-2)), while the same dose of NIR-mediated heating completely killed HepG2 cancer cells in vitro, presenting excellent photothermal properties. Two anticancer drugs, doxorubicin (DOX) and 6-mercaptopurine (6-MP), were loaded into the composite nanoparticles through physical interactions and Au-S bond, respectively. The dual drugs-loaded composite nanoparticles exhibited reduction-sensitive and NIR-triggered cocktail drugs release profiles and trigger-enhanced cytotoxicity. As evidenced by flow cytometry, fluorescence microscopy, and MTT assay, the LAC-coated composite nanoparticles were more internalized by the HepG2 than the HeLa cell line, demonstrating a LAC-targeting enhanced cytotoxicity toward HepG2. The combination cocktail chemo-photothermal therapy produced a lower half maximal inhibitory concentration than cocktail chemotherapy or photothermal therapy alone, displaying a good synergistic antitumor effect.


Assuntos
Doxorrubicina/farmacologia , Portadores de Fármacos/química , Mercaptopurina/farmacologia , Nanopartículas/química , Peptídeos/química , Fototerapia , Antibióticos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Células HeLa , Células Hep G2 , Humanos , Nanopartículas/administração & dosagem , Peptídeos/administração & dosagem
11.
Macromol Rapid Commun ; 36(10): 916-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25833346

RESUMO

Inspired by sweet or sugar-coated bullets that are used for medications in clinics and the structure and function of biological melanin, a novel kind of sweet polydopamine nanoparticles and their anticancer drug doxorubicin loaded counterparts are prepared, which integrate an active targeting function, photothermal therapy, and chemotherapy into one polymeric nanocarrier. The oxidative polymerization of lactosylated dopamine and/or with dopamine are performed under mild conditions and the resulting sweet nanoparticles are thoroughly characterized. When exposed to an 808 nm continuous-wave diode laser, the magnitude of temperature elevation not only increases with the concentration of nanoparticles, but can also be tuned by the laser power density. The nanoparticles possess strong near infrared light absorption, high photothermal conversion efficiency, and good photostability. The nanoparticles present tunable binding with RCA120 lectin and a targeting effect to HepG2 cells, confirmed by dynamic light scattering, turbidity analysis, MTT assay, and flow cytometry. Importantly, the sweet nanoparticles give the lowest IC50 value of 11.67 µg mL(-1) for chemo-photothermal therapy compared with 43.19 µg mL(-1) for single chemotherapy and 67.38 µg mL(-1) for photothermal therapy alone, demonstrating a good synergistic effect for the combination therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos , Indóis/síntese química , Polímeros/síntese química , Antibióticos Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Doxorrubicina/química , Composição de Medicamentos , Células HeLa , Células Hep G2 , Humanos , Lactose/química , Luz , Terapia com Luz de Baixa Intensidade , Melaninas/química
12.
J Am Chem Soc ; 136(44): 15787-91, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25286338

RESUMO

Rakicidin A is a cyclic depsipeptide that has exhibited unique growth inhibitory activity against chronic myelogenous leukemia stem cells. Furthermore, rakicidin A has five chiral centers with unknown stereochemical assignment, and thus, can be represented by one of 32 possible stereoisomers. To predict the most probable stereochemistry of rakicidin A, calculations and structural comparison with natural cyclic depsipeptides were applied. A total synthesis of the proposed structure was subsequently completed and highlighted by the creation of a sterically hindered ester bond (C1-C15) through trans-acylation from an easily established isomer (C1-C13). The analytic data of the synthetic target were consistent with that of natural rakicidin A, and then the absolute configuration of rakicidin A was assigned as 2S, 3S, 14S, 15S, 16R. This work suggests strategies for the determination of unknown chiral centers in other cyclic depsipeptides, such as rakicidin B, C, D, BE-43547, and vinylamycin, and facilitates the investigations of rakicidin A as an anticancer stem cell agent.


Assuntos
Lipopeptídeos/química , Peptídeos Cíclicos/química , Lipopeptídeos/síntese química , Estrutura Molecular , Peptídeos Cíclicos/síntese química
13.
Macromol Rapid Commun ; 35(19): 1673-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25170968

RESUMO

The biodegradable polymeric nanomedicines that may be integrated with multi-stimuli-sensitivity to achieve triggered or on-demand drug release kinetics are challenging for polymer therapeutics and drug delivery systems. By controlling the structure transformation of one polypeptide-b-PEO copolymer, a novel multi-responsive polypeptide-based vesicle (polypeptidosome) presents the combined sensitivity of multiple physiological and clinic-related stimuli, and both morphology and size of the polypeptidosome are changed during the triggered process. The designer polypeptide has unique structures composed of 1) light-responsive o-nitrobenzyl groups, 2) oxidizable thioether linkers, 3) photo-caged redox thiol groups on parent poly(L-cysteine), and 4) tunable conformation, which enable the polypeptidosome to have a peculiar multi-response. The anticancer drug doxorubicin can be released in a controlled or on-off manner. The combination stimuli of UV irradiation and H2 O2 oxidation induces a large effect and a lower IC50 of 3.80 µg doxorubicin (DOX) equiv/mL compared to 5.28 µg DOX equiv/mL of individual H2 O2 trigger.


Assuntos
Portadores de Fármacos , Peptídeos/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Células HeLa , Humanos , Oxirredução
14.
Int J Biol Macromol ; 272(Pt 1): 132736, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830494

RESUMO

Fatal massive hemorrhage and diabetic wound healing are world widely challenging in surgical managements, and uncontrolled bleeding, chronic inflammation and damaged remodeling heavily hinder the whole healing processes. Considering hemostasis, inflammation and wound microenvironment cooperatively affect the healing progression, we design all-in-one beta-glucan (BG) hybrid hydrogels reinforced with laponite nanoclay that demonstrate tunable tissue adhesion, resistant vascular burst pressure and cooperative wound microenvironment regulation for arterial hemostasis and diabetic wound prohealing. Those hydrogels had honeycomb-like porous microstructure with average pore size of 7-19 µm, tissue adhesion strength of 18-46 kPa, and vascular burst pressure of 58-174 mmHg to achieve superior hemostasis in rat liver and femoral artery models. They could effectively scavenge reactive oxygen species, transform macrophages from proinflammatory M1 into prohealing M2, and shorten the inflammation duration via synergistic actions of BG and nitric oxide (NO). Single treatment of NO-releasing BG hybrid hydrogels attained complete closure of diabetic wounds within 14 days, orchestrated to accelerate the epithelization and dermis growth, and restored normal vascularization, achieving high performance healing with optimal collagen deposition and hair follicle regeneration. Consequently, this work opens up a new avenue to design all-in-one polysaccharide hydrogels for applications in massive bleeding hemostats and diabetic wound dressings.


Assuntos
Hemorragia , Hidrogéis , Cicatrização , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Ratos , Hemorragia/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Masculino , Óxido Nítrico/metabolismo , beta-Glucanas/química , beta-Glucanas/farmacologia , Camundongos , Ratos Sprague-Dawley , Polissacarídeos/farmacologia , Polissacarídeos/química
15.
Biomater Sci ; 12(5): 1211-1227, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38240342

RESUMO

Regulating the wound microenvironment to promote proliferation, vascularization, and wound healing is challenging for hemostats and wound dressings. Herein, polypeptide composite hydrogels have been simply fabricated by mixing a smaller amount of metal ion-coordinated nanoparticles into dopamine-modified poly(L-glutamic acid) (PGA), which had a microporous size of 10-16 µm, photothermal conversion ability, good biocompatibility, and multiple biological activities. In vitro scratch healing of fibroblast L929 cells and the tube formation of HUVECs provide evidence that the PGA composite hydrogels could promote cell proliferation, migration, and angiogenesis with the assistance of mild photothermia. Moreover, these composite hydrogels plus mild photothermia could effectively eliminate reactive oxygen species (ROS), alleviate inflammation, and polarize the pro-inflammatory M1 macrophage phenotype into the pro-healing M2 phenotype to accelerate wound healing, as assessed by means of fluorescent microscopy, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR). Meanwhile, a rat liver bleeding model illustrates that the composite hydrogels reduced the blood loss ratio to about 10% and shortened the hemostasis time to about 25 s better than commercial chitosan-based hemostats. Furthermore, the full-thickness rat skin defect models showcase that the composite hydrogels plus mild photothermia could proheal wounds completely with a fast healing rate, optimal neovascularization, and collagen deposition. Therefore, the biodegradable polypeptide PGA composite hydrogels are promising as potent wound hemostats and dressings.


Assuntos
Ácido Glutâmico , Nanopartículas , Ratos , Animais , Ácido Glutâmico/farmacologia , Hidrogéis/farmacologia , Cicatrização , Hemostasia , Peptídeos/farmacologia , Antibacterianos/farmacologia
16.
Adv Healthc Mater ; : e2401354, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39233541

RESUMO

It is challenging for nanovaccines (NVs) to effectively deliver antigens/neoantigens to prime specifically potent immunities and remodel immunosuppressive tumor microenvironment (TME) for combating immune "cold" cancers. Herein, a novel kind of mannosylated fluoropolypeptide NVs of MFPCOFG (i.e., mannosylated fluoropoly(D,L-cysteine) ovalbumin-loaded Fe2+-gallic acid) is designed that synergistically integrates triple antigen-metal-thermoimmunity to remodel immunosuppressive TME and achieve highly potent immunities. MFPCOFG plus near-infrared irradiation (NIR) effectively facilitated antigen uptake and escape, induced the maturation and antigen cross-presentations of dendritic cells and macrophages, polarized anti-inflammatory macrophage phenotype M2 into tumoricial M1, primed potent CD4+/CD8+T cells responses, proinflammatory cytokines secretion and immune memory effects, showcasing triple antigen-metal-thermoimmunity outperforming combo/mono-immunity. Importantly, both MFPCOFG + NIR and personalized NVs can remarkably enhance the tumor infiltration of CD4+/CD8+T and NK cells to boost potent immunities and long-lasting memory effects, reduce regulatory T (Tregs) and M2 to remodel immunosuppressive TME in B16-OVA and 4T1 models, achieving superior tumor prevention, ablation, and tumor relapse and metastasis inhibition, as further orchestrated with anti-PD-1. Consequently, this work opens up a new avenue to design biocompatible polypeptide nanovaccines with potent immune-priming and TME-remodeling capabilities, holding great potentials to combat immune "cold" cancers with clinic-used anti-PD-1 for cancer immunotherapy and personalized immunotherapy.

17.
Biomacromolecules ; 14(9): 3329-37, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23957555

RESUMO

Hyperbranched poly(ε-benzyloxycarbonyl-L-lysine) (HPlys) with multiple alkyne peripheries was synthesized through the click polycondensation of an AB2 type Plys macromonomer with α-thiol and ω-alkyne terminal groups (thiol is the A unit, and each π bond in alkyne is the B unit), and the resulting HPlys was further conjugated with thiol-termined poly(ethylene oxide) (PEO) to generate HPlys-b-PEO block copolymer by consecutive thiol-yne chemistry. Their molecular structures and physical properties were characterized in detail by FT-IR, (1)H NMR, gel permeation chromatography, differential scanning calorimetry, wide-angle X-ray diffraction, and polarized optical microscopy. HPlys and HPlys-b-PEO mainly assumed an α-helix conformation similar to the linear precursors, while the liquid crystalline phase transition of Plys segment disappeared within HPlys and HPlys-b-PEO. HPlys-b-PEO self-assembled into nearly spherical micelles in aqueous solution, while it gave a 5-fold lower critical aggregation concentration (8.9 × 10(-3) mg/mL) than a linear counterpart (4.5 × 10(-2) mg/mL), demonstrating a dendritic topology effect. Compared with a linear counterpart, HPlys-b-PEO gave a higher drug-loading capacity and efficiency for the anticancer drug doxorubicin (DOX) and a slower drug-release rate with an improved burst-release profile, enabling them useful for drug delivery systems. Importantly, this work provides a versatile strategy for the synthesis of hyperbranched polypeptides and related block copolymers by utilizing thiol-yne chemistry.


Assuntos
Dendrímeros/síntese química , Polietilenos/síntese química , Polilisina/análogos & derivados , Alcinos/síntese química , Antibióticos Antineoplásicos/química , Varredura Diferencial de Calorimetria , Química Click , Doxorrubicina/química , Cinética , Micelas , Nanopartículas/química , Tamanho da Partícula , Polilisina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Sulfidrila/síntese química , Difração de Raios X
18.
Macromol Biosci ; 23(11): e2300215, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37363952

RESUMO

Ferroptosis is a novel type of iron-dependent non-apoptotic pathway that regulates cell death and shows unique mechanisms including causing lipid peroxide accumulation, sensitizing drug-resistant cancers, priming immunity by immunogenic cell death, and cooperatively acting with other anticancer modalities for eradicating aggressive malignancies and tumor relapse. Recently, there has been a great deal of effort to design and develop anticancer biocompatible polymeric nanoplatforms including polypeptide and PEGylated ones to achieve effective ferroptosis therapy (FT) and synergistic combination therapies including chemotherapy (CT), photodynamic therapy (PDT), sonodynamic therapy (SDT), photothermal therapy (PTT), gas therapy (GT) including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S), and immunotherapy (IT). To be noted, the combo therapies such as FT-CT, FT-PTT, FT-GT, and FT-IT are attracting much efforts to fight against intractable and metastatic tumors as they can generate synergistic antitumor effects and immunogenic cell death (ICD) effects or modulate immunosuppressive tumor microenvironments to initiate strong antitumor immunity and memory effects. The polymeric Fenton nano-agents with good biosafety and high anticancer efficacy will provide a guarantee for their applications. In this review, various biocompatible polymer-modified nanoplatforms designed for FT and combo treatments are summarized for anticancer therapies and discussed for potential clinical transitions.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Terapia Combinada , Imunoterapia , Polímeros , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Microambiente Tumoral
19.
Nanomedicine (Lond) ; 18(30): 2161-2184, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38180008

RESUMO

Glioblastoma (GB) originating from astrocytes is considered a grade IV astrocytoma tumor with severe consequences. The blood-brain barrier (BBB) offers a major obstacle in drug delivery to the brain to overcome GB. The current treatment options possess limited efficacy and maximal systemic toxic effects in GB therapy. Emerging techniques such as targeted drug delivery offer significant advantages, including enhanced drug delivery to the tumor site by overcoming the BBB. This review article focuses on the status of surface-modified lipid nanocarriers with functional ligands to efficiently traverse the BBB and improve brain targeting for successful GB treatment. The difficulties with surface-functionalized liposomes and potential future directions for opening up novel treatment options for GB are highlighted.


This review article discusses emerging strategies to overcome glioblastoma (GB), the deadliest form of brain cancer. Current treatment options show limited efficacy against GB with a high potential for side effects. Liposomes are a targeted drug-delivery system transporting anti-GB drugs to the target tumor cells. They are made of tiny particles of fat. However, barriers between the blood and brain and the tumor can prevent standard liposomes from reaching the target area. This is due to the size of these particles and their neutral charge. New strategies have been introduced to modify standard liposomes by including functional features on the surface of liposomes to change their properties. As a result, surface-functionalized liposomes overcome blood­brain barrier and blood­tumor barrier resistance to the transport of anti-GB medication. Hence, a sufficient amount of the drug reaches the brain and is localized in the target tumor area, resulting in improved GB therapy with a lower potential for systemic side effects. However, further research is needed to explore the use of surface-functionalized liposomes against GB before they are used to treat real patients.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Lipossomos/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Encéfalo , Sistemas de Liberação de Medicamentos/métodos , Barreira Hematoencefálica
20.
Cell Signal ; 102: 110527, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36410635

RESUMO

BACKGROUND: Overexpression of TFAP2A has been linked to increased lymph node metastasis in basal-squamous bladder cancer. However, its downstream targets in bladder urothelial carcinoma (BLCA), the most malignant cancer of the urinary tract, remain unclear. In the current study, we aim to explore the function and mechanism of TFAP2A in BLCA. METHODS: TFAP2A expression and the prognostic significance in BLCA was analyzed using TCGA and GTEX projects. TFAP2A was knocked-down in BLCA cells to study its impact on glucose uptake, lactate and ATP production, expression of HK2, and the number of vascular meshes formed by HUVEC. The target long noncoding RNAs (lncRNAs) of TFAP2A were predicted by bioinformatics tools, followed by ChIP-qPCR and luciferase assays. The downstream targets of TPRG1-AS1 were analyzed by microarray analysis. Rescue experiments were conducted for validation. RESULTS: TFAP2A upregulation in BLCA predicted dismal survival of patients. Loss of TFAP2A inhibited glycolysis (as evidenced by reduced glucose uptake, lactate, ATP production, and the expression of HK2) and angiogenesis (decreased number of vascular meshes formed by HUVEC). TFAP2A promoted the transcription of TPRG1-AS1. TPRG1-AS1 reversed the inhibitory effect of TFAP2A knockdown on glycolysis and angiogenesis in BLCA cells. TPRG1-AS1 inhibited the transcription of CRTAC1 by recruiting a DNA methyltransferase to the promoter of CRTAC1 and increasing the DNA methylation of its promoter. CRTAC1 inhibited glycolysis and angiogenesis in BLCA cells. TFAP2A silencing curbed tumor growth in vivo via the TPRG1-AS1/CRTAC1 axis. CONCLUSION: TFAP2A reduces CRTAC1 expression by promoting TPRG1-AS1 transcription, thereby expediting BLCA glycolysis and angiogenesis.


Assuntos
Carcinoma de Células de Transição , MicroRNAs , RNA Longo não Codificante , Fator de Transcrição AP-2 , Neoplasias da Bexiga Urinária , Humanos , Trifosfato de Adenosina , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glucose , Lactatos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA