RESUMO
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Assuntos
Anticorpos Monoclonais , Descoberta de Drogas/métodos , HumanosRESUMO
Although LXXLL motifs in coactivators mediate binding to liganded nuclear receptors, the roles of comparable motifs within nuclear receptors are less understood. We investigated the role of the LXXLL motifs in the human glucocorticoid receptor both in transcriptional activation and repression of gene expression. The two conserved LXXLL motifs within the ligand binding domain of the receptor, amino acids 532-536 (helix 1) and 718-722 (helix 10), were characterized by evaluating LXXLL mutant receptors as well as comparable mutants in other helices of the ligand binding domain. All mutant receptors were expressed at comparable levels to wild type in COS-1 cells. Mutation of 532-536 LXXLL to LXXAA completely disrupted dexamethasone induced transcription, whereas the 718-722 LXXAA mutant fully activated reporter genes at high ligand concentrations. Ligand binding analysis demonstrated that both LXXLL motif mutations resulted in disruption of ligand binding capacity without altering their association with hsp90. Proteolytic cleavage studies suggested that mutations of the LXXLL motifs introduced changes in the receptor conformation. Interestingly, the 532-536 LXXAA mutant was not able to transrepress NF-kappaB activity, whereas the 718-722 LXXAA mutant did so in the presence of ligand. These data suggest that although LXXLL motifs in helices 1 and 10 appear to lie outside the predicted ligand binding pocket they may contribute to receptor ligand binding affinity.
Assuntos
Ligantes , Mutação , Receptores de Glucocorticoides/genética , Motivos de Aminoácidos , Animais , Sítios de Ligação , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Expressão Gênica , Glucocorticoides/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP90/genética , Modelos Moleculares , NF-kappa B/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Ativação Transcricional , Transfecção , Triancinolona Acetonida/farmacologiaRESUMO
Protein A chromatography, employing the recombinant Protein A ligand, is widely used as a capture step for antibody and Fc-fusion proteins manufacture. Protein A ligands in these matrices are susceptible to degradation/loss when exposed to cleaning agents such as sodium hydroxide, resulting in loss of capacity on reuse. In this study, MabSelect Protein A ligand and MabSelect SuRe Protein A ligand were chosen to evaluate the impact of alkaline cleaning solutions on the ligands and the packed columns. The Protein A ligands alone and the Protein A columns were incubated or cycled in different concentrations of sodium hydroxide solutions with and without additives, respectively. Ligand integrity (degradation) and ligand function (binding affinity) were studied using SDS-PAGE and customized Biacore technology, surface plasma resonance (SPR) and were successfully correlated with column performance measurement in terms of static binding capacity (SBC), dynamic binding capacity (DBC) and recovery as a function of exposure to cleaning agents with and without additives. The findings and the methodology presented in this study are not only able to determine appropriate cleaning conditions for Protein A chromatography, but also provided tools to enable systematic and rapid study of the cleaning solutions and conditions.