Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 263(1): 74-88, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411274

RESUMO

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas dos Microfilamentos , Sirtuínas , Humanos , Acetilação , Actinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Histona Acetiltransferases/metabolismo , Metástase Linfática , Sirtuínas/metabolismo
2.
J Hum Genet ; 69(5): 197-203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374166

RESUMO

CAPZA2 encodes the α2 subunit of CAPZA, which is vital for actin polymerization and depolymerization in humans. However, understanding of diseases associated with CAPZA2 remains limited. To date, only three cases have been documented with neurodevelopmental abnormalities such as delayed motor development, speech delay, intellectual disability, hypotonia, and a history of seizures. In this study, we document a patient who exhibited seizures, mild intellectual disability, and impaired motor development yet did not demonstrate speech delay or hypotonia. The patient also suffered from recurrent instances of respiratory infections, gastrointestinal and allergic diseases. A novel de novo splicing variant c.219+1 G > A was detected in the CAPZA2 gene through whole-exome sequencing. This variant led to exon 4 skipping in mRNA splicing, confirmed by RT-PCR and Sanger sequencing. To our knowledge, this is the third study on human CAPZA2 defects, documenting the fourth unambiguously diagnosed case. Furthermore, this splicing mutation type is reported here for the first time. Our research offers additional support for the existence of a CAPZA2-related non-syndromic neurodevelopmental disorder. Our findings augment our understanding of the phenotypic range associated with CAPZA2 deficiency and enrich the knowledge of the mutational spectrum of the CAPZA2 gene.


Assuntos
Proteína de Capeamento de Actina CapZ , Deficiências do Desenvolvimento , Epilepsia , Heterozigoto , Hipotonia Muscular , Mutação , Pré-Escolar , Feminino , Humanos , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Epilepsia/genética , Sequenciamento do Exoma , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Fenótipo , Splicing de RNA/genética , Proteína de Capeamento de Actina CapZ/genética
3.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38364001

RESUMO

In this work, charge photogeneration and recombination processes of PM6:IDIC-4F and PM6:IDIC blend films were investigated by the steady-state and time-resolved spectroscopies, as well as the time-dependent density functional theory calculations. The peaks in absorption and photoluminescence (PL) spectra of IDIC and IDIC-4F solutions were assigned by combining the experiment and the simulation of UV-vis absorption and PL spectra. For neat acceptor films, the exciton diffusion length of neat IDIC and IDIC-4F films was estimated as ∼28.9 and ∼19.9 nm, respectively. For PM6-based blend films, we find that the fluorine substitution engineering on the IDIC acceptor material can increase the phase separate size of acceptor material in blend films, resulting in the reduction of dissociation efficiencies of acceptor excitons. In addition, we find that the charge recombination in PM6:IDIC-4F is dominated by bimolecular recombination, in comparison to geminate type carrier recombination in PM6:IDIC blend films. In addition, we find that thermal annealing treatment has a weak influence on carrier recombination but slightly reduces the exciton dissociation efficiency of acceptor in PM6:IDIC blend films, leading to a slightly reduced power conversion efficiency of PM6:IDIC solar cells. These results may shed light on the design of high-performance semiconductor molecules for application in solar cells.

4.
Cancer Sci ; 114(8): 3216-3229, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37317053

RESUMO

Transformer 2 alpha homolog (TRA2A), a member of the serine/arginine-rich splicing factor family, has been shown to control mRNA splicing in development and cancers. However, it remains unclear whether TRA2A is involved in lncRNA regulation. In the present study, we found that TRA2A was upregulated and correlated with poor prognosis in esophageal cancer. Downregulation of TRA2A suppressed the tumor growth in xenograft nude mice. Epitranscriptomic microarray showed that depletion of TRA2A affected global lncRNA methylation similarly to the key m6 A methyltransferase, METTL3, by silencing. MeRIP-qPCR, RNA pull-down, CLIP analyses, and stability assays indicated that ablation of TRA2A reduced m6 A-modification of the oncogenic lncRNA MALAT1, thus inducing structural alterations and reduced stability. Furthermore, Co-IP experiments showed TRA2A directly interacted with METTL3 and RBMX, which also affected the writer KIAA1429 expression. Knockdown of TRA2A inhibited cell proliferation in a manner restored by RBMX/KIAA1429 overexpression. Clinically, MALAT1, RBMX, and KIAA1429 were prognostic factors of worse survival in ESCA patients. Structural similarity-based virtual screening in FDA-approved drugs repurposed nebivolol, a ß1 -adrenergic receptor antagonist, as a potent compound to suppress the proliferation of esophageal cancer cells. Cellular thermal shift and RIP assay indicated that nebivolol may compete with MALAT1 to bind TRA2A. In conclusion, our study revealed the noncanonical function of TRA2A, which coordinates with multiple methylation proteins to promote oncogenic MALAT1 during ESCA carcinogenesis.


Assuntos
Neoplasias Esofágicas , RNA Longo não Codificante , Animais , Camundongos , Humanos , Metilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Camundongos Nus , Nebivolol , Neoplasias Esofágicas/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Metiltransferases/genética
5.
J Mol Recognit ; 36(1): e2998, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36225126

RESUMO

Fascin is a filamentous actin (F-actin) bundling protein, which cross-links F-actin into bundles and becomes an important component of filopodia on the cell surface. Fascin is overexpressed in many types of cancers. The mutation of fascin affects its ability to bind to F-actin and the progress of cancer. In this paper, we have studied the effects of residues of K22, K41, K43, K241, K358, K399, and K471 using molecular dynamics (MD) simulation. For the strong-effect residues, that is, K22, K41, K43, K358, and K471, our results show that the mutation of K to A leads to large values of root mean square fluctuation (RMSF) around the mutated residues, indicating those residues are important for the flexibility and thermal stability. On the other hand, based on residue cross-correlation analysis, alanine mutations of these residues reinforce the correlation between residues. Together with the RMSF data, the local flexibility is extended to the entire protein by the strong correlations to influence the dynamics and function of fascin. By contrast, for the mutants of K241A and K399A those do not affect the function of fascin, the RMSF data do not show significant differences compared with wild-type fascin. These findings are in a good agreement with experimental studies.


Assuntos
Actinas , Simulação de Dinâmica Molecular , Actinas/genética , Pseudópodes/genética , Pseudópodes/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Mutação
6.
Eur J Pediatr ; 182(3): 977-985, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527479

RESUMO

Neonatal early-onset sepsis (EOS) has unfortunately been the third leading cause of neonatal death worldwide. The current study is aimed at discovering reliable biomarkers for the diagnosis of neonatal EOS through transcriptomic analysis of publicly available datasets. Whole blood mRNA expression profiling of neonatal EOS patients in the GSE25504 dataset was downloaded and analyzed. The binomial LASSO model was constructed to select genes that most accurately predicted neonatal EOS. Then, ROC curves were generated to assess the performance of the predictive features in differentiating between neonatal EOS and normal infants. Finally, the miRNA-mRNA network was established to explore the potential biological mechanisms of genes within the model. Four genes (CST7, CD3G, CD247, and ANKRD22) were identified that most accurately predicted neonatal EOS and were subsequently used to construct a diagnostic model. ROC analysis revealed that this diagnostic model performed well in differentiating between neonatal EOS and normal infants in both the GSE25504 dataset and our clinical cohort. Finally, the miRNA-mRNA network consisting of the four genes and potential target miRNAs was constructed. Through bioinformatics analysis, a diagnostic four-gene model that can accurately distinguish neonatal EOS in newborns with bacterial infection was constructed, which can be used as an auxiliary test for diagnosing neonatal EOS with bacterial infection in the future. CONCLUSION: In the current study, we analyzed gene expression profiles of neonatal EOS patients from public databases to develop a genetic model for predicting sepsis, which could provide insight into early molecular changes and biological mechanisms of neonatal EOS. WHAT IS KNOWN: • Infants with suspected EOS usually receive empiric antibiotic therapy directly after birth. • When blood cultures are negative after 48 to 72 hours, empirical antibiotic treatment is often halted. Needless to say, this is not a short time. Additionally, because of the concern for inadequate clinical sepsis production and the limited sensitivity of blood cultures, the duration of antibiotic therapy for the kid is typically extended. WHAT IS NEW: • We established a 4-gene diagnostic model of neonatal EOS with bacterial infection by bioinformatics analysis method. The model has better diagnostic performance compared with conventional inflammatory indicators such as CRP, Hb, NEU%, and PCT.


Assuntos
Infecções Bacterianas , MicroRNAs , Sepse Neonatal , Sepse , Lactente , Humanos , Recém-Nascido , Sepse Neonatal/diagnóstico , Sepse Neonatal/genética , Infecções Bacterianas/diagnóstico , Sepse/diagnóstico , Sepse/genética , MicroRNAs/uso terapêutico , Antibacterianos/uso terapêutico
7.
Mediators Inflamm ; 2023: 9077787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197571

RESUMO

Background: Neonatal sepsis is an extremely dangerous and fatal disease among neonates, and its timely diagnosis is critical to treatment. This research is aimed at evaluating the clinical significance of the lymphocyte-to-C-reactive protein ratio (LCR) as an early sepsis indicator in neonates with suspected sepsis. Methods: Between January 2016 and December 2021, 1269 neonates suspected of developing sepsis were included in this research. Among them, sepsis was diagnosed in 819 neonates, with 448 severe cases, as per the International Pediatric Sepsis Consensus. Data related to clinical and laboratory tests were obtained via electronic medical records. LCR was calculated as total lymphocyte (109 cells/L)/C-reactive protein (mg/L). Multivariate logistic regression analysis was employed to evaluate the effectiveness of LCR as an independent indicator for determining sepsis in susceptible sepsis neonates. Receiver operating characteristic (ROC) curve analysis was conducted for investigating the diagnostic significance of LCR in sepsis. When suitable, the statistical tool SPSS 24.0 was used for statistical analyses. Results: LCR decreased significantly in the control, mild, and severe sepsis groups. Further analyses exhibited that there was a substantially greater incidence of sepsis in neonates in the low-LCR group (LCR ≤ 3.94) as opposed to the higher LCR group (LCR > 3.94) (77.6% vs. 51.4%, p < 0.001). Correlation analysis indicated a substantial negative association of LCR with procalcitonin (r = -0.519, p < 0.001) and hospital stay duration (r = -0.258, p < 0.001). Multiple logistic regression analysis depicted LCR as an independent indicator for identifying sepsis and severe cases of this disease. ROC curve analysis indicated the optimal cutoff value of LCR in identifying sepsis to be 2.10, with 88% sensitivity and 55% specificity. Conclusions: LCR has proven to be a potentially strong biomarker capable of identifying sepsis in a timely manner in neonates suspected to have the disease.


Assuntos
Proteína C-Reativa , Sepse , Humanos , Recém-Nascido , Biomarcadores , Proteína C-Reativa/metabolismo , Calcitonina , Estudos Retrospectivos , Curva ROC , Sepse/diagnóstico
8.
Inorg Chem ; 59(4): 2594-2603, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32011880

RESUMO

Glyoxalase I (GlxI) is a member of the glyoxalase system, which is important in cell detoxification and converts hemithioacetals of methylglyoxal (a cytotoxic byproduct of sugar metabolism that may react with DNA or proteins and introduce nucleic acid strand breaks, elevated mutation frequencies, and structural or functional changes of the proteins) and glutathione into d-lactate. GlxI accepts both the S and R enantiomers of hemithioacetal, but converts them to only the S-d enantiomer of lactoylglutathione. Interestingly, the enzyme shows this unusual specificity with a rather symmetric active site (a Zn ion coordinated to two glutamate residues; Glu-99 and Glu-172), making the investigation of its reaction mechanism challenging. Herein, we have performed a series of combined quantum mechanics and molecular mechanics calculations to study the reaction mechanism of GlxI. The substrate can bind to the enzyme in two different modes, depending on the direction of its alcoholic proton (H2; toward Glu-99 or Glu-172). Our results show that the S substrate can react only if H2 is directed toward Glu-99 and the R substrate only if H2 is directed toward Glu-172. In both cases, the reactions lead to the experimentally observed S-d enantiomer of the product. In addition, the results do not show any low-energy paths to the wrong enantiomer of the product from neither the S nor the R substrate. Previous studies have presented several opposing mechanisms for the conversion of R and S enantiomers of the substrate to the correct enantiomer of the product. Our results confirm one of them for the S substrate, but propose a new one for the R substrate.


Assuntos
Glutationa/análogos & derivados , Lactoilglutationa Liase/química , Aldeído Pirúvico/análogos & derivados , Teoria da Densidade Funcional , Humanos , Modelos Químicos , Prótons , Estereoisomerismo
9.
Mediators Inflamm ; 2020: 3872367, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082709

RESUMO

Matrix metalloproteinase-9 (MMP-9) belongs to the MMP family and has been widely investigated. Excessive MMP-9 expression can enhance extracellular matrix degradation and promote plaque instability. Studies have demonstrated that MMP-9 levels are higher in vulnerable plaques than in stable plaques. Additionally, several human studies have demonstrated that MMP-9 may be a predictor of atherosclerotic plaque instability and a risk factor for future adverse cardiovascular and cerebrovascular events. MMP-9 deficiency or blocking MMP-9 expression can inhibit plaque inflammation and prevent atherosclerotic plaque instability. All of these results suggest that MMP-9 may be a useful predictive biomarker for vulnerable atherosclerotic plaques, as well as a therapeutic target for preventing atherosclerotic plaque instability. In this review, we describe the structure, function, and regulation of MMP-9. We also discuss the role of MMP-9 in predicting and preventing atherosclerotic plaque instability.


Assuntos
Inflamação/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Inflamação/genética , Metaloproteinase 9 da Matriz/genética , Placa Aterosclerótica/genética
10.
Mediators Inflamm ; 2020: 5938957, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410858

RESUMO

BACKGROUND: Previous studies have demonstrated that plasma high-sensitivity C-reactive protein (hsCRP) was the predictor for unstable coronary plaque. Patients with noncalcified plaque (NCP) or mixed plaque (MP) have a higher risk of poor outcomes. However, the association between hsCRP and the presence of NCP or MP (NCP/MP) in old adults remains unclear, and if present, whether there exist differences between young and old adults remain unknown. Thus, the aim of this study was to investigate the role of hsCRP in predicting the presence of NCP/MP and evaluate whether age has any impact on this association. METHODS: A total of 951 subjects were included in this study. Complete clinical and laboratory data were collected. According to the characteristics of the most stenotic plaque, we divided them into 2 groups: calcified plaque (CP) and NCP/MP. Subjects with no plaque were classified as the control group (CR). Subjects with age ≥ 60 years were defined as older adults, and those with age < 60 years were classified as nonelderly people. RESULTS: Patients with NCP/MP had significantly higher hsCRP level compared with subjects with CR or CP in older adults but not in nonelderly people. The proportion of NCP/MP was significantly increased from 27.0% in the hsCRP < 1.25 mg/L group to 42.7% in the hsCRP > 2.70 mg/L group in older adults. Multiple logistic regression analysis showed that hsCRP was an independent risk factor for the presence of NCP/MP (odds ratio (OR) = 1.093, 95% CI 1.032-1.157, P = 0.001) only in older adults. CONCLUSIONS: hsCRP is independently associated with the presence of NCP/MP in older adults but not in nonelderly people. These results suggest the potential significance of hsCRP-lowering regimens in older adults with NCP/MP.


Assuntos
Aterosclerose/sangue , Proteína C-Reativa/análise , Doença da Artéria Coronariana/sangue , Adulto , Fatores Etários , Idoso , Doenças Cardiovasculares/metabolismo , Angiografia Coronária , Feminino , Coração , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Placa Aterosclerótica/patologia , Medição de Risco , Sensibilidade e Especificidade , Resultado do Tratamento
11.
Mediators Inflamm ; 2020: 9254087, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774152

RESUMO

Neutrophil extracellular traps (NETs) are characterized as extracellular DNA fibers comprised of histone and cytoplasmic granule proteins. NETs were first described as a form of innate response against pathogen invasion, which can capture pathogens, degrade bacterial toxic factors, and kill bacteria. Additionally, NETs also provide a scaffold for protein and cell binding. Protein binding to NETs further activate the coagulation system which participates in thrombosis. In addition, NETs also can damage the tissues due to the proteins they carry. Many studies have suggested that the excessive formation of NETs may contribute to a range of diseases, including thrombosis, atherosclerosis, autoimmune diseases, and sepsis. In this review, we describe the structure and components of NETs, models of NET formation, and detection methods. We also discuss the molecular mechanism of NET formation and their disease relevance. Modulation of NET formation may provide a new route for the prevention and treatment of releated human diseases.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Animais , Aterosclerose/metabolismo , Doenças Autoimunes/metabolismo , Humanos
12.
Molecules ; 25(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916920

RESUMO

Y6 is a new type of non-fullerene acceptor, which has led to power conversion efficiencies of single-junction polymer solar cells over 17% when combined with a careful choice of polymeric donors. However, the excited state characteristics of Y6, which is closely correlated with its opto-electronic applications, are not clear yet. In this work, we studied the excited state properties of the Y6 solution and Y6 film, by using steady-state and time-resolved spectroscopies as well as time-dependent density functional theory (TD-DFT) calculations. UV-Vis absorption and fluorescence simulation, natural transition orbitals (NTOs) and hole-electron distribution analysis of Y6 solution were performed for understanding the excitation properties of Y6 by using TD-DFT calculations. The lifetimes of the lowest singlet excited state in Y6 solution and film were estimated to be 0.98 and 0.8 ns, respectively. Combining the exciton lifetime and photoluminescence (PL) quantum yield, the intrinsic radiative decay lifetimes of Y6 in the solution and film were estimated, which were 1.3 and 10.5 ns for the Y6 solution and film, respectively. Long exciton lifetime (~0.8 ns) and intrinsic radiative decay lifetime (~10.5 ns) of Y6 film enable Y6 to be a good acceptor material for the application of polymer solar cells.


Assuntos
Fotoquímica/métodos , Polímeros/química , Semicondutores , Espectrofotometria/métodos , Clorofórmio , Eletrônica , Elétrons , Fulerenos/química , Cinética , Luminescência , Modelos Moleculares , Distribuição Normal , Óptica e Fotônica , Teoria Quântica , Energia Solar , Espectrometria de Fluorescência
13.
Molecules ; 24(14)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319475

RESUMO

We have developed a new competitive protein binding assay (CPBA) based on human serum albumin functionalized silicon dioxide nanoparticles (nano-SiO2-HSA) that can be used for naproxen determination in urine. Compared with a conventional multi-well reaction plate, nano-SiO2 with a high surface-area-to-volume ratio could be introduced as a stationary phase, markedly improving the analytical performance. Nano-SiO2-HSA and horseradish peroxidase-labeled-naproxen (HRP-naproxen) were prepared for the present CPBA method. In this study, a direct competitive binding to nano-SiO2-HSAwas performed between the free naproxen in the sample and HRP-naproxen. Thus, the catalytic color reactions were investigated on an HRP/3,3'5,5'-tetramethylbenzidine (TMB)/H2O2 system by the HRP-naproxen/nano-SiO2-HSA composite for quantitative measurement via an ultraviolet spectrophotometer. A series of validation experiments indicated that our proposed methods can be applied satisfactorily to the determination of naproxen in urine samples. As a proof of principle, the newly developed nano-CPBA method for the quantification of naproxen in urine can be expected to have the advantages of low costs, fast speed, high accuracy, and relatively simple instrument requirements. Our method could be capable of expanding the analytical applications of nanomaterials and of determining other small-molecule compounds from various biological samples.


Assuntos
Nanopartículas/química , Naproxeno/isolamento & purificação , Albumina Sérica Humana/genética , Dióxido de Silício/química , Peroxidase do Rábano Silvestre/química , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , Nanoestruturas/química , Naproxeno/química , Ligação Proteica/genética , Albumina Sérica Humana/química
14.
J Biol Inorg Chem ; 23(8): 1243-1254, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30173398

RESUMO

Formate dehydrogenases (FDHs) are metalloenzymes that catalyse the reversible conversion of formate to carbon dioxide. Since such a process may be used to combat the greenhouse effect, FDHs have been extensively studied by experimental and theoretical methods. However, the reaction mechanism is still not clear; instead five putative mechanisms have been suggested. In this work, the reaction mechanism of FDH was studied by computational methods. Combined quantum mechanical and molecular mechanic (QM/MM) optimisations were performed to obtain the geometries. To get more accurate energies and obtain a detailed account of the surroundings, big-QM calculations with a very large (1121 atoms) QM region were performed. Our results indicate that the formate substrate does not coordinate directly to Mo when it enters the oxidised active site of the FDH, but instead resides in the second coordination sphere. The sulfido ligand abstracts a hydride ion from the substrate, giving a Mo(IV)-SH state and a thiocarbonate ion attached to Cys196. The latter releases CO2 when the active site is oxidised back to the resting (MoVI) state. This mechanism is supported by recent experimental studies.


Assuntos
Formiato Desidrogenases/química , Metaloproteínas/química , Dióxido de Carbono/química , Catálise , Domínio Catalítico , Teoria da Densidade Funcional , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Formiatos/química , Ligantes , Modelos Químicos , Simulação de Dinâmica Molecular , Molibdênio/química , Oxirredução
15.
J Biol Inorg Chem ; 23(2): 221-229, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29204715

RESUMO

Lipoyl synthase (LipA) catalyses the final step of the biosynthesis of the lipoyl cofactor by insertion of two sulfur atoms at the C6 and C8 atoms of the protein-bound octanoyl substrate. In this reaction, two [4Fe4S] clusters and two molecules of S-adenosyl-L-methionine are used. One of the two FeS clusters is responsible for the generation of a powerful oxidant, the 5'-deoxyadenosyl radical (5'-dA•). The other (the auxiliary cluster) is the source of both sulfur atoms that are inserted into the substrate. In this paper, the spin state of the FeS clusters and the reaction mechanism is investigated by the combined quantum mechanical and molecular mechanics approach. The calculations show that the ground state of the two FeS clusters, both in the [4Fe4S]2+ oxidation state, is a singlet state with antiferromagnetically coupled high-spin Fe ions and that there is quite a large variation of the energies of the various broken-symmetry states, up to 40 kJ/mol. For the two S-insertion reactions, the highest energy barrier is found for the hydrogen-atom abstraction from the octanoyl substrate by 5'-dA•. The formation of 5'-dA• is very facile for LipA, with an energy barrier of 6 kJ/mol for the first S-insertion reaction and without any barrier for the second S-insertion reaction. In addition, the first S ion attack on the C6 radical of octanoyl was found to take place directly by the transfer of the H6 from the substrate to 5'-dA•, whereas for the second S-insertion reaction, a C8 radical intermediate was formed with a rate-limiting barrier of 71 kJ/mol.


Assuntos
Teoria da Densidade Funcional , Ligases/metabolismo , Lipídeos/química , Catálise , Proteínas Ferro-Enxofre/metabolismo , Ligases/química , Modelos Moleculares , Especificidade por Substrato , Termodinâmica
16.
Inorg Chem ; 57(24): 15289-15298, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30500163

RESUMO

[NiFe] hydrogenases catalyze the reversible conversion of molecular hydrogen to protons and electrons. This seemingly simple reaction has attracted much attention because of the prospective use of H2 as a clean fuel. In this paper, we have studied the full reaction mechanism of this enzyme with various computational methods. Geometries were obtained with combined quantum mechanical and molecular mechanics (QM/MM) calculations. To get more accurate energies and obtain a detailed account of the surroundings, we performed big-QM calculations with 819 atoms in the QM region. Moreover, QM/MM thermodynamic cycle perturbation calculations were performed to obtain free energies. Finally, density matrix renormalisation group complete active space self-consistent field calculations were carried out to study the electronic structures of the various states in the reaction mechanism. Our calculations indicate that the Ni-L state is not involved in the reaction mechanism. Instead, the Ni-C state is reduced by one electron and then the bridging hydride ion is transferred to the sulfur atom of Cys546 as a proton and the two electrons transfer to the Ni ion. This step turned out to be rate-determining with an energy barrier of 58 kJ/mol, which is consistent with the experimental rate of 750 ± 90 s-1 (corresponding to ∼52 kJ/mol). The cleavage of the H-H bond is facile with an energy barrier of 33 kJ/mol, according to our calculations. We also find that the reaction energies are sensitive to the size of the QM system, the basis set, and the density functional theory method, in agreement with previous studies.


Assuntos
Teoria da Densidade Funcional , Hidrogenase/metabolismo , Teoria Quântica , Biocatálise , Desulfovibrio vulgaris/enzimologia , Elétrons , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Modelos Moleculares , Estrutura Molecular , Prótons
17.
Phys Chem Chem Phys ; 20(2): 794-801, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29205241

RESUMO

The combination of density functional theory (DFT) with a multiconfigurational wave function is an efficient way to include dynamical correlation in calculations with multiconfiguration self-consistent field wave functions. These methods can potentially be employed to elucidate reaction mechanisms in bio-inorganic chemistry, where many other methods become either too computationally expensive or too inaccurate. In this paper, a complete active space (CAS) short-range DFT (CAS-srDFT) hybrid was employed to investigate a bio-inorganic system, namely H2 binding to the active site of [NiFe] hydrogenase. This system was previously investigated with coupled-cluster (CC) and multiconfigurational methods in the form of cumulant-approximated second-order perturbation theory, based on the density matrix renormalization group (DMRG). We find that it is more favorable for H2 to bind to Ni than to Fe, in agreement with previous CC and DMRG calculations. The accuracy of CAS-srDFT is comparable to both CC and DMRG, despite much smaller active spaces were employed than in the corresponding DMRG calculations. This enhanced efficiency at the smaller active spaces shows that CAS-srDFT can become a useful method for bio-inorganic chemistry.


Assuntos
Hidrogenase/química , Modelos Moleculares , Fenômenos Biofísicos , Domínio Catalítico
18.
Phys Chem Chem Phys ; 19(16): 10590-10601, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28397891

RESUMO

[NiFe] hydrogenases catalyse the reversible conversion of molecular hydrogen to protons and electrons. This seemingly simple reaction has attracted much attention because of the prospective use of H2 as a clean fuel. In this paper, we have studied how H2 binds to the active site of this enzyme. Combined quantum mechanical and molecular mechanics (QM/MM) optimisation was performed to obtain the geometries, using both the TPSS and B3LYP density-functional theory (DFT) methods and considering both the singlet and triplet states of the Ni(ii) ion. To get more accurate energies and obtain a detailed account of the surroundings, we performed calculations with 819 atoms in the QM region. Moreover, coupled-cluster calculations with singles, doubles, and perturbatively treated triples (CCSD(T)) and cumulant-approximated second-order perturbation theory based on the density-matrix renormalisation group (DMRG-CASPT2) were carried out using three models to decide which DFT methods give the most accurate structures and energies. Our calculations show that H2 binding to Ni in the singlet state is the most favourable by at least 47 kJ mol-1. In addition, the TPSS functional gives more accurate energies than B3LYP for this system.


Assuntos
Hidrogênio/química , Hidrogenase/química , Domínio Catalítico , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Modelos Moleculares , Níquel/química , Teoria Quântica , Termodinâmica
19.
Biomed Chromatogr ; 31(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28205294

RESUMO

A highly sensitive and rapid ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed and validated for simultaneous quantification of the four main bioactive compounds, i.e. baicalin, baicalein, wogonoside and wogonin, in rat plasma after oral administration of Radix Scutellariae extract. Clarithromycin was used as an internal standard (IS). Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 µm) at a flow rate of 0.4 mL/min, using 0.1% formic acid-acetonitrile as mobile phase. The MS/MS ion transit ions monitored were 447.5 → 270.1 for baicalin, 270.1 → 168.1 for baicalein, 461.2 → 284.0 for wogonoside, 284.2 → 168.1 for wogonin and 748.5 → 158.1 for IS. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantification (LLOQ) achieved was 1.13 ng/mL for baicalin, 1.23 ng/mL for baicalein, 0.82 ng/mL for wogonoside and 0.36 ng/mL for wogonin. The calibration curves obtained were linear (r > 0.99) over the concentration range ~ 1-1000 ng/mL. The intra- and inter-day precision was <15% and the accuracy was within ±14.7%. After validation, this method was successfully applied to a pharmacokinetic study of Radix Scutellariae extract.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Flavanonas/sangue , Scutellaria baicalensis/química , Espectrometria de Massas em Tandem/métodos , Administração Oral , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/farmacocinética , Flavanonas/química , Flavanonas/farmacocinética , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
J Am Chem Soc ; 138(27): 8489-96, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27309496

RESUMO

The iron(IV)-oxo (ferryl) intermediate has been amply established as the principal oxidant in nonheme enzymes and the key player in C-H bond activations and functionalizations. In contrast to this status, our present QM/MM calculations of the mechanism of fosfomycin biosynthesis (a broad range antibiotic) by the nonheme HppE enzyme rule out the iron(IV)-oxo as the reactive species in the hydrogen abstraction (H-abstraction) step of the pro-R hydrogen from the (S)-2-hydroxypropylphosphonic substrate. Moreover, the study reveals that the ferryl species is bypassed in HppE, while the actual oxidant is an HO(•) radical hydrogen-bonded to a ferric-hydroxo complex, resulting via the homolytic dissociation of the hydrogen peroxide complex, Fe(II)-H2O2. The computed energy barrier of this pathway is 12.0 kcal/mol, in fair agreement with the experimental datum of 9.8 kcal/mol. An alternative mechanism involves the iron-complexed hydroxyl radical (Fe(III)-(HO(•))) that is obtained by protonation of the iron(IV)-oxo group via the O-H group of the substrate. The barrier for this pathway, 23.0 kcal/mol, is higher than the one in the first mechanism. In both mechanisms, the HO(•) radical is highly selective; its H-abstraction leading to the final cis-fosfomycin product. It appears that HppE is prone to usage of HO(•) radicals for C-H bond activation, because the ferryl oxidant requires a specific H-abstraction trajectory (∠FeOH ∼ 180°) that cannot be met for intramolecular H-abstraction. Thus, this work broadens the landscape of nonheme iron enzymes and makes a connection to Fenton chemistry, with implications on new potential biocatalysts that may harness hydroxyl radicals for C-H bond functionalizations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA