Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Waste Manag Res ; 40(1): 66-78, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34579593

RESUMO

Transport and separation processes of solid waste can only be modelled successfully with discrete element methods in case the shape of the particles can be described accurately. The existing techniques for morphological data acquisition, such as computed tomography, laser scanning technique, optical interferometer, stereo photography and structured light technique, are laborious and require a large amount of realistic solid waste samples. Therefore, there is a pressing need for an alternative method to describe the shape of solid waste particles and to generate multiple variations of particles with almost similar shapes. In this paper, a new method to describe solid waste particles is proposed that is frequency-based and uses spherical harmonics (SHs). Additionally, a new shape generation method is introduced that uses the shape description of a single particle to generate an array of related shapes based on a probability density function with a dimensionless control factor η. The newly proposed methods were successfully applied to describe the complex shapes of pieces of metal and plastic scrap. The shapes of these pieces of scrap can be described adequately with 15° of SH expansion and the overall divergence is within 0.1 mm. Five different values for η were tested, which generated shapes with the same distribution as the original particle. Rising levels of η cause the morphological variation of the generated particles to increase. These new methods improve the modelling of transportation and separation processes.


Assuntos
Plásticos , Resíduos Sólidos , Metais , Tamanho da Partícula , Probabilidade
2.
Waste Manag Res ; 39(4): 573-583, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33499775

RESUMO

End-of-life vehicles (ELVs) provide a particularly potent source of supply for metals. Hence, the recycling and sorting techniques for ferrous and nonferrous metal scraps from ELVs significantly increase metal resource utilization. However, different kinds of nonferrous metal scraps, such as aluminium (Al) and copper (Cu), are not further automatically classified due to the lack of proper techniques. The purpose of this study is to propose an identification method for different nonferrous metal scraps, facilitate the further separation of nonferrous metal scraps, achieve better management of recycled metal resources and increase sustainability. A convolutional neural network (CNN) and SEEDS (superpixels extracted via energy-driven sampling) were adopted in this study. To build the classifier, 80 training images of randomly chosen Al and Cu scraps were taken, and some practical methods were proposed, including training patch generation with SEEDS, image data augmentation and automatic labelling methods for enormous training data. To obtain more accurate results, SEEDS was also used to optimize the coarse results obtained from the pretrained CNN model. Five indicators were adopted to evaluate the final identification results. Furthermore, 15 test samples concerning different classification environments were tested through the proposed model, and it performed well under all of the employed evaluation indexes, with an average precision of 0.98. The results demonstrate that the proposed model is robust for metal scrap identification, which can be expanded to a complex industrial environment, and it presents new possibilities for highly accurate automatic nonferrous metal scrap classification.


Assuntos
Aprendizado Profundo , Alumínio , Metais , Redes Neurais de Computação , Reciclagem
3.
Sensors (Basel) ; 19(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781700

RESUMO

Prognostics and Health Management (PHM) is an emerging technique which can improve the availability and efficiency of equipment. A series of related optimization of the PHM system has been achieved due to the growing need for lowering the cost of maintenance. The PHM system highly relies on data collected from its components. Based on the theory of machine learning, this paper proposes a bio-inspired PHM model based on a dissolved gas-in-oil dataset (DGA) to diagnose faults of transformes in power grids. Specifically, this model applies Bat algorithm (BA), a metaheuristic population-based algorithm, to optimize the structure of the Back-propagation neural network (BPNN). Furthermore, this paper proposes a modified Bat algorithm (MBA); here the chaos strategy is utilized to improve the random initialization process of BA in order to avoid falling into local optima. To prove that the proposed PHM model has better fault diagnostic performance than others, fitness and mean squared error (MSE) of Bat-BPNN are set as reference amounts to compare with other power grid PHM approaches including BPNN, Particle swarm optimization (PSO)-BPNN, as well as Genetic algorithm (GA)-BPNN. The experimental results show that the BA-BPNN model has increased the fault diagnosis accuracy from 77.14% to 97.14%, which is higher than other power transformer PHM models.

4.
Sensors (Basel) ; 18(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558208

RESUMO

An emerging prognostic and health management (PHM) technology has recently attracted a great deal of attention from academies, industries, and governments. The need for higher equipment availability and lower maintenance cost is driving the development and integration of prognostic and health management systems. PHM models depend on the smart sensors and data generated from sensors. This paper proposed a machine learning-based methods for developing PHM models from sensor data to perform fault diagnostic for transformer systems in a smart grid. In particular, we apply the Cuckoo Search (CS) algorithm to optimize the Back-propagation (BP) neural network in order to build high performance fault diagnostics models. The models were developed using sensor data called dissolved gas data in oil of the power transformer. We validated the models using real sensor data collected from power transformers in China. The results demonstrate that the developed meta heuristic algorithm for optimizing the parameters of the neural network is effective and useful; and machine learning-based models significantly improved the performance and accuracy of fault diagnosis/detection for power transformer PHM.

5.
Waste Manag ; 120: 667-674, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33176941

RESUMO

End-of-life vehicles (ELVs) provide a particularly potent source of non-ferrous metal scraps. At presents, conveyor belt and air-jet nozzle are widely used in the existing separation system for non-ferrous metal scraps. Parameters such as shape of the scraps, conveyor belt speed (v), nozzle air pressure (P) and nozzle angle (α) have a significant influences on the separating accuracy and efficiency. To investigate the interaction between these parameters and their influences on the separation distance, a coupled simulation model of (Discrete Element Method) DEM and (Finite Element Method) FEM was employed to simulate the motion of the scraps and the separation process, the trajectory of the scraps under different circumstances was recorded and analyzed, the simulation model was verified using a separation platform. The results indicated that block shaped scraps have the largest separation distance followed by rod and slice shaped scraps. The separation distance of rod and slice shaped scraps increases when each of the three parameters increases, and the speed of conveyor belt (v) plays a dominant role. For blocks shaped scraps, when nozzle pressure is high, the separation distance increase with the increase of conveyor belt speed, when nozzle pressure is low, the separation distance decrease with the increase of conveyor belt speed. The nozzle pressure (P) was found to have the most noticeable impact on separation distance for block shaped scraps. For the platform in this study, the optimal operation parameters obtained were v = 1.9 m/s, P = 0.53 MPa, and α = 42°.


Assuntos
Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA