RESUMO
Acid-sensing ion channel 1 (ASIC1) is critical in acidotoxicity and significantly contributes to neuronal death in cerebral stroke. Pharmacological inhibition of ASIC1 has been shown to reduce neuronal death. However, the potential of utilizing exosomes derived from pluripotent stem cells to achieve inhibition of Asic1 remains to be explored. Developing qualified exosome products with precise and potent active ingredients suitable for clinical application is also ongoing. Here, we adopt small RNA-seq to interrogate the miRNA contents in exosomes of pluripotent stem cell induced mesenchymal stem cell (iMSC). RNA-seq was used to compare the oxygen-glucose deprivation-damaged neurons before and after the delivery of exosomes. We used Western blot to quantify the Asic1 protein abundance in neurons before and after exosome treatment. An in vivo test on rats validated the neuroprotective effect of iMSC-derived exosome and its active potent miRNA hsa-mir-125b-5p. We demonstrate that pluripotent stem cell-derived iMSCs produce exosomes with consistent miRNA contents and sustained expression. These exosomes efficiently rescue injured neurons, alleviate the pathological burden, and restore neuron function in rats under oxygen-glucose deprivation stress. Furthermore, we identify hsa-mir-125b-5p as the active component responsible for inhibiting the Asic1a protein and protecting neurons. We validated a novel therapeutic strategy to enhance acidosis resilience in cerebral stroke by utilizing exosomes derived from pluripotent stem cells with specific miRNA content. This holds promise for cerebral stroke treatment with the potential to reduce neuronal damage and improve clinical patient outcomes.
Assuntos
Canais Iônicos Sensíveis a Ácido , Acidose , Exossomos , MicroRNAs , Animais , Humanos , Masculino , Ratos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Acidose/metabolismo , Isquemia Encefálica/metabolismo , Exossomos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genéticaRESUMO
The pursuit of stable and efficient electrocatalysts toward seawater oxidation is of great interest, yet it poses considerable challenges. Herein, the utilization of Cr-doped CoFe-layered double hydroxide nanosheet array is reported on nickel-foam (Cr-CoFe-LDH/NF) as an efficient electrocatalyst for oxygen evolution reaction in alkaline seawater. The Cr-CoFe-LDH/NF catalyst can achieve current densities of 500 and 1000 mA cm -2 with remarkably low overpotentials of only 334 and 369 mV, respectively. Furthermore, it maintains at least 100 h stability when operated at 500 mA cm-2.
RESUMO
Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2P@NiMoO4/NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2P@NiMoO4/NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2, respectively, surpassing that of Ni2P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2P/NF (120 h) and Ni(OH)2/NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2-/PO4 3- from Ni2P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO-.
RESUMO
Renewable electricity-driven seawater splitting presents a green, effective, and promising strategy for building hydrogen (H2)-based energy systems (e.g., storing wind power as H2), especially in many coastal cities. The abundance of Cl- in seawater, however, will cause severe corrosion of anode catalyst during the seawater electrolysis, and thus affect the long-term stability of the catalyst. Herein, seawater oxidation performances of NiFe layered double hydroxides (LDH), a classic oxygen (O2) evolution material, can be boosted by employing tungstate (WO4 2-) as the intercalated guest. Notably, insertion of WO4 2- to LDH layers upgrades the reaction kinetics and selectivity, attaining higher current densities with ≈100% O2 generation efficiency in alkaline seawater. Moreover, after a 350 h test at 1000 mA cm-2, only trace active chlorine can be detected in the electrolyte. Additionally, O2 evolution follows lattice oxygen mechanism on NiFe LDH with intercalated WO4 2-.
RESUMO
Retinal detachment (RD) refers to the separation between the neuroepithelium and the pigment epithelium layer. It is an important disease leading to irreversible vision damage worldwide, in which photoreceptor cell death plays a major role. α-Synuclein (α-syn) is reportedly involved in numerous mechanisms of neurodegenerative diseases, but the association with photoreceptor damage in RD has not been studied. In this study, elevated transcription levels of α-syn and parthanatos proteins were observed in the vitreous of patients with RD. The expression of α-syn- and parthanatos-related proteins was increased in experimental rat RD, and was involved in the mechanism of photoreceptor damage, which was related to the decreased expression of miR-7a-5p (miR-7). Interestingly, subretinal injection of miR-7 mimic in rats with RD inhibited the expression of retinal α-syn and down-regulated the parthanatos pathway, thereby protecting retinal structure and function. In addition, interference with α-syn in 661W cells decreased the expression of parthanatos death pathway in oxygen and glucose deprivation model. In conclusion, this study demonstrates the presence of parthanatos-related proteins in patients with RD and the role of the miR-7/α-syn/parthanatos pathway in photoreceptor damage in RD.
Assuntos
MicroRNAs , Parthanatos , Descolamento Retiniano , Ratos , Humanos , Animais , Descolamento Retiniano/genética , Descolamento Retiniano/metabolismo , Apoptose , Células Fotorreceptoras de Vertebrados/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Células Fotorreceptoras/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Animais de DoençasRESUMO
OBJECTIVE: This study aims to conduct an in-depth genomic analysis of a carbapenem-resistant Proteus mirabilis strain to uncover the distribution and mechanisms of its resistance genes. METHODS: The research primarily utilized whole-genome sequencing to analyze the genome of the Proteus mirabilis strain. Additionally, antibiotic susceptibility tests were conducted to evaluate the strain's sensitivity to various antibiotics, and related case information was collected to analyze the clinical distribution characteristics of the resistant strain. RESULTS: Study on bacterial strain WF3430 from a tetanus and pneumonia patient reveals resistance to multiple antibiotics due to extensive use. Whole-genome sequencing exposes a 4,045,480 bp chromosome carrying 29 antibiotic resistance genes. Two multidrug-resistant (MDR) gene regions, resembling Tn6577 and Tn6589, were identified (MDR Region 1: 64.83 Kb, MDR Region 2: 85.64 Kbp). These regions, consist of integrative and conjugative elements (ICE) structures, highlight the intricate multidrug resistance in clinical settings. CONCLUSION: This study found that a CR-PMI strain exhibits a unique mechanism for acquiring antimicrobial resistance genes, such as blaNDM-1, located on the chromosome instead of plasmids. According to the results, there is increasing complexity in the mechanisms of horizontal transmission of resistance, necessitating a comprehensive understanding and implementation of targeted control measures in both hospital and community settings.
Assuntos
Antibacterianos , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Infecções por Proteus , Proteus mirabilis , Sequenciamento Completo do Genoma , beta-Lactamases , Proteus mirabilis/genética , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/enzimologia , Proteus mirabilis/isolamento & purificação , beta-Lactamases/genética , Humanos , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Infecções por Proteus/microbiologia , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Genoma Bacteriano/genética , Carbapenêmicos/farmacologiaRESUMO
Diabetic retinopathy (DR), the most common ocular complication of diabetes mellitus (DM), has exhibited an increase in incidence over the past decade. S100 calcium-binding protein A9 (S100A9) plays a significant role in inflammation and cancer. Toll-like receptor 4 (TLR4), a transmembrane receptor, initiates signaling cascades upon ligand binding. S100A9 activates TLR4, and their involvement in various diseases is well-established. We found elevated S100A9/TLR4 pathway proteins in the vitreous of DR patients. Bioinformatics analysis revealed differential gene expression related to this pathway. These proteins were also detected in diabetic rat retinas and induced structural damage. Paquinimod, an S100A9 inhibitor, decreased pathway protein expression and reduced retinal damage. Our study validates the S100A9/TLR4 pathway in diabetic retinas and suggests its potential as a therapeutic target for DR. Targeting S100A9 could offer a novel approach to prevention and treatment.
RESUMO
With the rapid development of nanotechnology and biomedicine, numerous gadolinium (Gd)-based nanoparticle MRI contrast agents have been widely investigated. Due to the unique physicochemical properties of nanoparticles and the complexity of biological systems, the biosafety of Gd-based nanoparticle MRI contrast agents has been paid more and more attention. Herein, for the first time, we employed an ultra-high performance liquid chromatography-electrospray ionization quadrupole time-of-flight/mass spectrometry (UPLC-ESI-QTOF/MS)-based metabolomics approach to investigate the potential toxicity of Gd-based nanoparticle MRI contrast agents. In this work, NaGdF4 and PEG-NaGdF4 nanoparticles were successfully constructed and selected as the representative Gd-based nanoparticle MRI contrast agents for the metabolomics analysis. Based on the results of metabolomics, more metabolic biomarkers and pathways were identified in the NaGdF4 group than those in the PEG-NaGdF4 group. Careful analysis of these metabolic biomarkers and pathways suggested that NaGdF4 nanoparticles induced disturbance of pyrimidine and purine metabolism, inflammatory response, and kidney injury to a certain extent compared with PEG-NaGdF4 nanoparticles. These results indicated that Gd-based nanoparticle contrast agents modified with PEG had better biosafety. Additionally, it was demonstrated that the discovery of characteristic metabolomics biomarkers induced by nanoparticles would provide a new approach for biosafety assessment and stimulate the development of nanomedicine.
Assuntos
Meios de Contraste , Nanopartículas , Meios de Contraste/toxicidade , Meios de Contraste/química , Contenção de Riscos Biológicos , Gadolínio/química , Nanopartículas/toxicidade , Nanopartículas/química , Imageamento por Ressonância Magnética/métodos , BiomarcadoresRESUMO
BACKGROUND: Metagenomic next-generation sequencing (mNGS) has been increasingly applied in sepsis. We aimed to evaluate the diagnostic and therapeutic utility of mNGS of paired plasma and peritoneal drainage (PD) fluid samples in comparison to culture-based microbiological tests (CMTs) among critically ill patients with suspected acute intra-abdominal infections (IAIs). METHODS: We conducted a prospective study from October 2021 to December 2022 enrolling septic patients with suspected IAIs (n = 111). Pairwise CMTs and mNGS of plasma and PD fluid were sent for pathogen detection. The mNGS group underwent therapeutic regimen adjustment based on mNGS results for better treatment. The microbial community structure, clinical features, antibiotic use and prognoses of the patients were analyzed. RESULTS: Higher positivity rates were observed with mNGS versus CMTs for both PD fluid (90.0% vs. 48.3%, p < 0.005) and plasma (76.7% vs. 1.6%, p < 0.005). 90% of enrolled patients had clues of suspected pathogens combining mNGS and CMT methods. Gram-negative pathogens consist of most intra-abdominal pathogens, including a great variety of anaerobes represented by Bacteroides and Clostridium. Patients with matched plasma- and PD-mNGS results had higher mortality and sepsis severity. Reduced usage of carbapenem (30.0% vs. 49.4%, p < 0.05) and duration of anti-MRSA treatment (5.1 ± 3.3 vs. 7.0 ± 8.4 days, p < 0.05) was shown in the mNGS group in our study. CONCLUSIONS: Pairwise plasma and PD fluid mNGS improves microbiological diagnosis compared to CMTs for acute IAI. Combining plasma and PD mNGS could predict poor prognosis. mNGS may enable optimize empirical antibiotic use.
Assuntos
Infecções Intra-Abdominais , Sepse , Humanos , Estudos Prospectivos , Drenagem , Sequenciamento de Nucleotídeos em Larga Escala , Antibacterianos , Sensibilidade e Especificidade , Estudos RetrospectivosRESUMO
Phthalate plasticizers (PAEs) illegally used in food pose a great threat to human health. A new and efficient sensing platform for the sensitive detection of the PAE residues in biological fluids needs to be designed and developed. Here, we report a simple and reliable surface-enhanced Raman spectroscopy (SERS) active platform with extralong hot spots of Au nanobipyramids@Ag nanorods (Au NBPs@Ag NRs) for the rapid and sensitive detection of PAEs in biological fluids. To achieve high activity, Au NBPs@Ag NRs with different shell lengths were fabricated by controlling the synthesis conditions, and the corresponding SERS properties were investigated by using crystal violet (CryV) and butyl benzyl phthalate (BBP). The experimental results showed that a longer shell length correlated to greater Raman activity, which was confirmed by finite-difference time-domain (FDTD) electromagnetic simulation. More importantly, the extralong hot spots of the Au NBPs@Ag NR SERS-active substrate showed excellent homogeneity and reproducibility for the CryV probe molecules (6.21%), and the detection limit was 10-9 M for both BBP and diethylhexyl phthalate (DEHP). Furthermore, through the standard addition method, an extralong hot spots SERS substrate could achieve highly sensitive detection of BBP and DEHP in serum and tears fluids, and the detection limit was as low as 3.52 × 10-8 M and 2.82 × 10-8 M. Therefore, the Au NBPs@Ag NR substrate with an extraordinarily long surface is efficient and versatile, and can potentially be used for high-efficiency sensing analysis in complex biological fluids.
Assuntos
Ouro , Limite de Detecção , Ácidos Ftálicos , Plastificantes , Prata , Análise Espectral Raman , Lágrimas , Análise Espectral Raman/métodos , Ácidos Ftálicos/análise , Plastificantes/análise , Humanos , Ouro/química , Prata/química , Lágrimas/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Nanotubos/químicaRESUMO
Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.
Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Sepse , Animais , Sepse/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacocinética , Masculino , Ratos , Administração IntravenosaRESUMO
Chemodynamic therapy (CDT) based on intracellular Fenton reaction to produce highly cytotoxic reactive oxygen species (ROS) has played an essential role in tumor therapy. However, this therapy still needs to be improved by weakly acidic pH and over-expression of glutathione (GSH) in tumor microenvironment (TEM), which hinders its future application. Herein, we reported a multifunctional bimetallic composite nanoparticle MnO2@GA-Fe@CAI based on a metal polyphenol network (MPN) structure, which could reduce intracellular pH and endogenous GSH by remodeling tumor microenvironment to improve Fenton activity. MnO2 nanoparticles were prepared first and MnO2@GA-Fe nanoparticles with Fe3+ as central ion and gallic acid (GA) as surface ligands were prepared by the chelation reaction. Then, carbonic anhydrase inhibitor (CAI) was coupled with GA to form MnO2@GA-Fe@CAI. The properties of the bimetallic composite nanoparticles were studied, and the results showed that CAI could reduce intracellular pH. At the same time, MnO2 could deplete intracellular GSH and produce Mn2+ via redox reactions, which re-established the TME with low pH and GSH. In addition, GA reduced Fe3+ to Fe2+. Mn2+ and Fe2+ catalyzed the endogenous H2O2 to produce high-lever ROS to kill tumor cells. Compared with MnO2, MnO2@GA-Fe@CAI could reduce the tumor weight and volume for the xenograft MDA-MB-231 tumor-bearing mice and the final tumor inhibition rate of 58.09 ± 5.77%, showing the improved therapeutic effect as well as the biological safety. Therefore, this study achieved the high-efficiency CDT effect catalyzed by bimetallic through reshaping the tumor microenvironment.
Assuntos
Nanopartículas , Neoplasias , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Peróxido de Hidrogênio , Compostos de Manganês/farmacologia , Espécies Reativas de Oxigênio , Óxidos , Ácido Gálico , Glutationa , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
The electrochemical nitrogen reduction reaction (eNRR) is a crucial process for the sustainable production of ammonia (NH3) for energy and agriculture applications. However, the reaction's efficiency is highly dependent on the activation of the inert N≡N bond, which is hindered by the electron back-donation to the π* orbitals of the N≡N bond, resulting in low eNRR capacity. Herein, we report a main-group metal-nonmetal (O-In-S) eNRR catalyst featuring a dynamic proton bridge, with In-S serving as the polarization pair and O functioning as the dynamic electron pool. In situ spectroscopic analysis and theoretical calculations reveal that the In-S polarization pair acts as asymmetric dual-sites, polarizing the N≡N bond by concurrently back-donating electrons to both the πx* and πy* orbitals of N2, thereby overcoming the significant band gap limitations, while inhibiting the competitive hydrogen evolution reaction. Meanwhile, the O dynamic electron pool acts as a "repository" for electron storage and donation to the In-S polarization pair. As a result, the O-In-S dynamic proton bridge exhibits exceptional NH3 yield rates and Faradaic efficiencies (FEs) across a wide potential window of 0.3â V, with an optimal NH3 yield rate of 80.07±4.25â µg h-1 mg-1 and an FE of 38.01±2.02 %, outperforming most previously reported catalysts.
RESUMO
Transition-metal carbides with metallic properties have been extensively used as electrocatalysts due to their excellent conductivity and unique electronic structures. Herein, NbC nanoparticles decorated carbon nanofibers (NbC@CNFs) are proposed as an efficient and robust catalyst for electrochemical synthesis of ammonia from nitrate/nitrite reduction, which achieves a high Faradaic efficiency (FE) of 94.4 % and a large ammonia yield of 30.9â mg h-1 mg-1 cat.. In situ electrochemical tests reveal the nitrite reduction at the catalyst surface follows the *NO pathway and theoretical calculations reveal the formation of NbC@CNFs heterostructure significantly broadens density of states nearby the Fermi energy. Finite element simulations unveil that the current and electric field converge on the NbC nanoparticles along the fiber, suggesting the dispersed carbides are highly active for nitrite reduction.
RESUMO
Constructing efficient and low-cost oxygen evolution reaction (OER) catalysts operating in seawater is essential for green hydrogen production but remains a great challenge. In this study, we report an iron doped cobalt carbonate hydroxide nanowire array on nickel foam (Fe-CoCH/NF) as a high-efficiency OER electrocatalyst. In alkaline seawater, such Fe-CoCH/NF demands an overpotential of 387 mV to drive 500 mA cm-2, superior to that of CoCH/NF (597 mV). Moreover, it achieves excellent electrochemical and structural stability in alkaline seawater.
RESUMO
Electrocatalytic nitrite (NO2-) reduction offers the potential to synthesize high-value ammonia (NH3) while simultaneously removing NO2- pollution from aqueous solutions, but it requires high-efficiency catalysts to drive the complex six-electron reaction. Herein, cobalt-nanoparticle-decorated 3D porous nitrogen-doped carbon network (Co@NC) is proven as a high-efficiency catalyst for the selective electroreduction of NO2- to NH3. Such Co@NC attains a large NH3 yield of 922.7 µmol h-1 cm-2 and a high Faradaic efficiency of 95.4% under alkaline conditions. Furthermore, it shows remarkable electrochemical stability during cyclic electrolysis.
RESUMO
Seawater electrolysis driven by renewable electricity is deemed a promising and sustainable strategy for green hydrogen production, but it is still formidably challenging. Here, we report an iron-doped NiS nanosheet array on Ni foam (Fe-NiS/NF) as a high-performance and stable seawater splitting electrocatalyst. Such Fe-NiS/NF catalyst needs overpotentials of only 420 and 270 mV at 1000 mA cm-2 for the oxygen evolution reaction and hydrogen evolution reaction in alkaline seawater, respectively. Furthermore, its two-electrode electrolyzer needs a cell voltage of 1.88 V for 1000 mA cm-2 with 50 h of long-term electrochemical durability in alkaline seawater. Additionally, in situ electrochemical Raman and infrared spectroscopy were employed to detect the reconstitution process of NiOOH and the generation of oxygen intermediates under reaction conditions.
RESUMO
Treatment of depression with antidepressants is partly effective. Transcranial alternating current stimulation can provide a non-pharmacological alternative for adult patients with major depressive disorder. However, no study has used the stimulation to treat first-episode and drug-naïve patients with major depressive disorder. We used a randomized, double-blind, sham-controlled design to examine the clinical efficacy and safety of the stimulation in treating first-episode drug-naïve patients in a Chinese Han population. From 4 June 2018 to 30 December 2019, 100 patients were recruited and randomly assigned to receive 20 daily 40-min, 77.5 Hz, 15 mA, one forehead and two mastoid sessions of active or sham stimulation (n = 50 for each group) in four consecutive weeks (Week 4), and were followed for additional 4-week efficacy/safety assessment without stimulation (Week 8). The primary outcome was a remission rate defined as the 17-item Hamilton Depression Rating Scale (HDRS-17) score ≤ 7 at Week 8. Secondary analyses were response rates (defined as a reduction of ≥ 50% in the HDRS-17), changes in depressive symptoms and severity from baseline to Week 4 and Week 8, and rates of adverse events. Data were analysed in an intention-to-treat sample. Forty-nine in the active and 46 in the sham completed the study. Twenty-seven of 50 (54%) in the active treatment group and 9 of 50 (18%) in the sham group achieved remission at the end of Week 8. The remission rate was significantly higher in the active group compared to that in the sham group with a risk ratio of 1.78 (95% confidence interval, 1.29, 2.47). Compared with the sham, the active group had a significantly higher remission rate at Week 4, response rates at Weeks 4 and 8, and a larger reduction in depressive symptoms from baseline to Weeks 4 and 8. Adverse events were similar between the groups. In conclusion, the stimulation on the frontal cortex and two mastoids significantly improved symptoms in first-episode drug-naïve patients with major depressive disorder and may be considered as a non-pharmacological intervention for them in an outpatient setting.
Assuntos
Transtorno Depressivo Maior , Estimulação Transcraniana por Corrente Contínua , Adulto , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Estimulação Magnética Transcraniana , Resultado do TratamentoRESUMO
Parkinson's disease (PD) is a common neurodegenerative motor disorder characterized by a dramatic reduction in pars compacta of substantia nigra dopaminergic neurons and striatal dopamine (DA) levels. Mutations or deletions in the PARK7/DJ-1 gene are associated with an early-onset familial form of PD. DJ-1 protein prevents neurodegeneration via its regulation of oxidative stress and mitochondrial function as well as its roles in transcription and signal transduction. In this study, we investigated how loss of DJ-1 function affected DA degradation, ROS generation and mitochondrial dysfunction in neuronal cells. We showed that loss of DJ-1 significantly increased the expression of monoamine oxidase (MAO)-B but not MAO-A in both neuronal cells and primary astrocytes. In DJ-1-knockout (KO) mice, MAO-B protein levels in the substantia nigra (SN) and striatal regions were significantly increased. We demonstrated that the induction of MAO-B expression by DJ-1 deficiency depended on early growth response 1 (EGR1) in N2a cells. By coimmunoprecipitation omics analysis, we found that DJ-1 interacted with receptor of activated protein C kinase 1 (RACK1), a scaffolding protein, and thus inhibited the activity of the PKC/JNK/AP-1/EGR1 cascade. The PKC inhibitor sotrastaurin or the JNK inhibitor SP600125 completely inhibited DJ-1 deficiency-induced EGR1 and MAO-B expression in N2a cells. Moreover, the MAO-B inhibitor rasagiline inhibited mitochondrial ROS generation and rescued neuronal cell death caused by DJ-1 deficiency, especially in response to MPTP stimulation in vitro and in vivo. These results suggest that DJ-1 exerts neuroprotective effects by inhibiting the expression of MAO-B distributed at the mitochondrial outer membrane, which mediates DA degradation, ROS generation and mitochondrial dysfunction. This study reveals a mechanistic link between DJ-1 and MAO-B expression and contributes to understanding the crosslinks among pathogenic factors, mitochondrial dysfunction and oxidative stress in PD pathogenesis.
Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia , Regulação para Cima , Espécies Reativas de Oxigênio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transdução de Sinais , Doenças Neurodegenerativas/metabolismo , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/farmacologia , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismoRESUMO
A aerobic, gram-negative, rod-shaped and polar-flagellum bacterial strain, designated as FYR11-62T, was isolated from the estuary of the Fenhe River into the Yellow River in Shanxi Province, China. The isolate was able to grow at 4-37 °C (optimum, 25 °C), pH 5.5-9.5 (optimum, pH 7.5) and in the presence of 0-7.0% (w/v) NaCl (optimum, 1.0% NaCl). Phylogenetic analyses based on 16S rRNA genes and 1597 single-copy orthologous clusters indicated that strain FYR11-62T affiliated with the genus Shewanella and shared the highest 16S rRNA gene sequence similarity to Shewanella aestuarii SC18T (98.3%) and Shewanella gaetbuli TF-27T (97.3%), respectively. The major fatty acids were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0 and iso-C15:0. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The main quinones were Q-7 and Q-8. The genomic DNA G + C content was 41.6%. Gene annotation showed that strain FYR11-62T possessed 30 antibiotic resistance genes, implying its multiple antidrug resistance. The average nucleotide identity and digital DNA-DNA hybridization values between strain FYR11-62T and its closely related species were all below the thresholds for species delineation. The phylogenetic position together with the results of the analysis of morphological, physiological and genomic features support the classification of strain FYR11-62T (= MCCC 1K07242T = KCTC 92244T) as a novel species of the genus Shewanella, for which the name Shewanella subflava sp. nov. is proposed.