Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Small ; 19(10): e2205949, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549677

RESUMO

3D bioprinting has become a flexible technical means used in many fields. Currently, research on 3D bioprinting is mainly focused on the use of mammalian cells to print organ and tissue models, which has greatly promoted progress in the fields of tissue engineering, regenerative medicine, and pharmaceuticals. In recent years, bacterial bioprinting has gradually become a rapidly developing research fields, with a wide range of potential applications in basic research, biomedicine, bioremediation, and other field. Here, this works reviews new research on bacterial bioprinting, and discuss its future research direction.


Assuntos
Bioimpressão , Animais , Impressão Tridimensional , Engenharia Tecidual , Medicina Regenerativa , Bactérias , Alicerces Teciduais , Mamíferos
2.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37459278

RESUMO

Probiotics have gained significant attention owing to their roles in regulating human health. Recently, spray drying has been considered as a promising technique to produce probiotic powders due to its advantages of high efficiency, cost-saving, and good powder properties. However, the severe environmental conditions from drying and digestion can significantly reduce cell viability, resulting in poor bioaccessibility and bioavailability of live cells. Therefore, there is a need to develop effective targeted delivery systems using spray drying to protect bacteria and to maintain their physiological functions in the targeted sites. This review highlights recent studies about spray-dried targeted delivery vehicles for probiotics, focusing on key strategies to protect bacteria when encountering external stresses, the formation mechanism of particles, the targeted release and colonization mechanisms of live cells in particles with different structures. Advances in the targeted delivery of live probiotics via spray-dried vehicles are still in their early stages. To increase the possibilities for industrialization and commercialization, functional improvement of microcapsules in terms of protection, targeted release, and colonization of bacteria, as well as the effect of spray drying on bacterial physiological functions in the host, need to be further investigated.

3.
Metab Eng ; 74: 206-219, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36336175

RESUMO

Genistin is one of the bioactive isoflavone glucosides found in legumes, which have great nutraceutical and pharmaceutical significance. The market available isoflavones are currently produced by direct plant extraction. However, its low abundance in plant and structural complexity hinders access to this phytopharmaceutical via plant extraction or chemical synthesis. Here, the E. coli cell factory for sustainable production of genistin from glycerol was constructed. First, we rebuilt the precursor genistein biosynthesis pathway in E. coli, and its titer was then increased by 668% by identifying rate-limiting steps and applying an artificial protein scaffold system. Then de novo production of genistin from glycerol was achieved by functional screening and introduction of glycosyl-transferases, UDP-glucose pathway and specific genistin efflux pumps, and 48.1 mg/L of genistin was obtained. A further engineered E. coli strain equipped with an improved malonyl-CoA pathway, alternative glycerol-utilization pathways, acetyl-CoA carboxylase (ACC), and CRISPR interference (CRISPRi) mediated regulation produced up to 137.8 mg/L of genistin in shake flask cultures. Finally, 202.7 mg/L genistin was achieved through fed-batch fermentation in a 3-L bioreactor. This study represents the de novo genistin production from glycerol for the first time and will lay the foundation for low-cost microbial production of glucoside isoflavones. In addition, the multiphase workflow may provide a reference for engineering the biosynthetic pathways in other microbial hosts as well, for green manufacturing of complex natural products.


Assuntos
Escherichia coli , Isoflavonas , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Glicerol/metabolismo , Isoflavonas/metabolismo , Glucosídeos
4.
Eur J Nutr ; 61(2): 779-792, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34553258

RESUMO

PURPOSE: Soy whey is a byproduct generated from the processing of several soybean products. Its valorization has continued to attract significant research interest in recent times due to the nutritional and bioactive potency of its chemical composition. Herein, the neuroprotective potency of a soy whey fermented by Cordyceps militaris SN-18 against hydrogen peroxide (H2O2)-induced oxidative injury in PC12 cells was investigated. METHODS: The phenolic compositions were analyzed by high-performance liquid chromatography. Antioxidant activities were assessed by ABTS•+ scavenging assay, DPPH radical scavenging assay, reducing power assay, and ferric reducing antioxidant power assay. The neuroprotective effects of fermented soy whey (FSW) were investigated based on the oxidative injury model in PC12 cells. RESULTS: FSW possessed higher total phenolic content and antioxidant activities compared with unfermented soy whey (UFSW) and that most of the isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. The extract from FSW exhibited a greater protective effect on PC12 cells against oxidative injury by promoting cell proliferation, restoring cell morphology, inhibiting lactic dehydrogenase leakage, reducing reactive oxygen species levels, and enhancing antioxidant enzyme activities compared with that from UFSW. Additionally, cell apoptosis was significantly inhibited by FSW through down-regulation of caspase-3, caspase-9, and Bax and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was attenuated by FSW through increasing cyclin A, CDK1 and CDK2, and decreasing p21 protein. CONCLUSION: Fermentation with C. militaris SN-18 could significantly improve the bioactivity of soy whey by enhancing the ability of nerve cells to resist oxidative damage.


Assuntos
Cordyceps , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Cordyceps/metabolismo , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Células PC12 , Ratos , Glycine max/metabolismo , Soro do Leite/metabolismo
5.
Metab Eng ; 67: 403-416, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34411702

RESUMO

Malonyl-CoA is an important building block for microbial synthesis of numerous pharmaceutically interesting or fatty acid-derived compounds including polyketides, flavonoids, phenylpropanoids and fatty acids. However, the tightly regulated intracellular malonyl-CoA availability often impedes overall product formation. Here, in order to unleash this tightly cellular behavior, we present evolution: dual dynamic regulations-based approaches to write artificial robust and dynamic function into intricate cellular background. Firstly, a conserved core domain based evolutionary principles were incorporated into genome mining to explore the biosynthetic diversities of discrete acetyl-CoA carboxylase (ACC) families, as malonyl-CoA is solely derived from carboxylation of acetyl-CoA by ACC in most organisms. A comprehensive phylogenomic and further experimental analysis, which included genomes of 50 strains throughout representative species, was performed to recapitulate the evolutionary history and reveal that previously unnoticed ACC families from Salmonella enterica exhibited the highest activities among all the candidates. A set of orthogonal and bi-functional quorum-sensing (QS)-based regulation tools were further designed and connected with T7 RNA polymerase as genetic amplifier to achieve dual dynamic control in a high dynamic range, which allowed us to efficiently activate and repress different sets of genes dynamically and independently. These genetic circuits were then combined with ACC of S. enterica and CRISPRi system to reprogram central metabolism that rewired the tightly regulated malonyl-CoA pathway to a robust and autonomous behavior, leading to a 29-fold increase of malony-CoA availability. We applied this dual regulation tool to successfully synthesizing malonyl-CoA-derived compound (2S)-naringenin, and achieved the highest production (1073.8 mg/L) reported to date associate with dramatic decreases of by-product formation. Notably, the whole fermentation presents as an autonomous behavior, totally eliminating human supervision and inducer supplementation. Hence, the constructed evolution: dual dynamic regulations-based approaches pave the way to develop an economically viable and scalable procedure for microbial production of malonyl-CoA derived compounds.


Assuntos
Malonil Coenzima A , Policetídeos , Acetilcoenzima A/genética , Acetil-CoA Carboxilase , Engenharia Metabólica
6.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069784

RESUMO

Fermented soybean products have attracted great attention due to their health benefits. In the present study, the hypoxia-injured PC12 cells induced by cobalt chloride (CoCl2) were used to evaluate the neuroprotective potency of tofu fermented by Actinomucor elegans (FT). Results indicated that FT exhibited higher phenolic content and antioxidant activity than tofu. Moreover, most soybean isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. FT demonstrated a significant protective effect on PC12 cells against hypoxic injury by maintaining cell viability, reducing lactic dehydrogenase leakage, and inhibiting oxidative stress. The cell apoptosis was significantly attenuated by the FT through down-regulation of caspase-3, caspases-8, caspase-9, and Bax, and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was significantly inhibited by the FT through increasing cyclin A and decreasing the p21 protein level. Furthermore, treatment with the FT activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. Overall, FT offered a potential protective effect on nerve cells in vitro against hypoxic damage.


Assuntos
Cobalto/toxicidade , Mucorales/metabolismo , Fármacos Neuroprotetores/farmacologia , Alimentos de Soja , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fermentação , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Fenóis/química , Ratos
7.
J Sci Food Agric ; 101(3): 871-879, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32729126

RESUMO

BACKGROUND: The aim of this study was to investigate the effect of lactic fermentation on soy protein gastrointestinal digestive pattern and the influence of protein digesta on human faecal microbiota. Soymilk and soy yogurt were prepared in this study and a novel in vitro dynamic gastrointestinal model was employed to simulate gastric and duodenum digestions. Particle size, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), and peptide content were monitored at the end of duodenum tract. RESULTS: Ingestion of soy yogurt allowed a rapid drop in pH from 7.0 to 5.0 at simulated duodenal digestion (0-30 min), and resulted in a loss in soluble protein content compared to that of soymilk. The electrophoretic pattern between soymilk and soy yogurt exerted distinctive differences at early stages of duodenal digestion (0-60 min) and resulted in different peptide contents (180 min). Soy yogurt duodenal digesta collected at 180 min (D180), by co-fermentation with human intestinal flora distribution, allowed a higher population in Bifidobacterium spp., Lactobacillus/Enterococcus spp. and Streptococcus/Lactococcus spp., whereas soy yogurt D30 resulted in lower population in Clostridium and Escherichia coli compared to samples co-fermented with soymilk digesta. CONCLUSION: The results demonstrated lactic fermentation of soy protein modulated human intestinal microflora and might relate to the different protein digestive behaviours. © 2020 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Lactobacillaceae/metabolismo , Proteínas de Soja/metabolismo , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Digestão , Fezes/microbiologia , Feminino , Fermentação , Trato Gastrointestinal/microbiologia , Humanos , Lactobacillaceae/classificação , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Masculino , Alimentos de Soja/análise
8.
Metab Eng ; 53: 1-13, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30684584

RESUMO

Medium-chain (C6-C10) chemicals are important components of fuels, commodities and fine chemicals. Numerous exciting achievements have proven reversed ß-oxidation cycle as a promising platform to synthesize these chemicals. However, under native central carbon metabolism, energetic and redox constraints limit the efficient operation of reversed ß-oxidation cycle. Current fermentative platform has to use different chemically and energetically inefficient ways for acetyl-CoA and NADH biosynthesis, respectively. The characteristics such as supplementation of additional acetate and formate or high ATP requirement makes this platform incompatible with large-scale production. Here, an artificial micro-aerobic metabolism for energy and carbon-efficient conversion of glycerol to MCFAs was constructed to present solutions towards these barriers. After evaluating numerous bacteria pathways under micro-aerobic conditions, one synthetic metabolic step enabling biosynthesis of acetyl-CoA and NADH simultaneously, without any energy cost and additional carbon requirement, and reducing loss of carbon to carbon dioxide-emitting reactions, was conceived and successfully constructed. The pyruvate dehydrogenase from Enterococcus faecalis was identified and biochemically characterized, demonstrating the most suitable characteristics. Furthermore, the carbon and energy metabolism in Escherichia coli was rewired by the clustered regularly interspaced short palindromic repeats interference system, inhibiting native fermentation pathways outcompeting this synthetic step. The present engineered strain exhibited a 15.7-fold increase in MCFA titer compared with that of the initial strain, and produced 15.67 g/L MCFAs from the biodiesel byproduct glycerol in 3-L bioreactor without exogenous feed of acetate or formate, representing the highest MCFA titer reported to date. This work demonstrates this artificial micro-aerobic metabolism has the potential to enable the cost-effective, large-scale production of fatty acids and other value-added reduced chemicals.


Assuntos
Metabolismo Energético , Escherichia coli , Ácidos Graxos/biossíntese , Engenharia Metabólica , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Reatores Biológicos , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/genética , Complexo Piruvato Desidrogenase/biossíntese , Complexo Piruvato Desidrogenase/genética
9.
Molecules ; 24(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769776

RESUMO

Glutinous rice-based foods have a long history are consumed worldwide. They are also in great demand for the pursuit of novel sensory and natural health benefits. In this study, we developed a novel fermented glutinous rice product with the supplementation of Fu brick tea. Using in vitro antioxidant evaluation and phenolic compounds analysis, fermentation with Fu brick tea increased the total phenolic content and enhanced the antioxidant activity of glutinous rice, including scavenging of 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical, and hydroxyl radical, ferric-reducing antioxidant power, and ferric ion reducing power and iron chelating capability. Besides, compared with traditional fermented glutinous rice, this novel functional food exhibited a stronger activity for protecting DNA against hydroxyl radical-induced oxidation damage. Quantitative analysis by HPLC identified 14 compounds covering catechins and phenolic acids, which were considered to be positively related to the enhanced antioxidant capability. Furthermore, we found that 80% ethanol was a suitable extract solvent compared with water, because of its higher extraction efficiency and stronger functional activities. Our results suggested that this novel fermented glutinous rice could serve as a nutraceutical food/ingredient with special sensory and functional activities.


Assuntos
Antioxidantes/química , Quelantes de Ferro/química , Oryza/química , Fenóis/química , Benzotiazóis/química , Compostos de Bifenilo/química , Catecóis/química , China , Cromatografia Líquida de Alta Pressão , Dano ao DNA/efeitos dos fármacos , Fermentação , Sequestradores de Radicais Livres/química , Humanos , Radical Hidroxila/química , Oxirredução , Picratos/química , Ácidos Sulfônicos/química , Triterpenos/química
10.
J Sci Food Agric ; 99(2): 861-867, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30006936

RESUMO

BACKGROUND: Lactic acid bacteria fermentation allows soymilk to form a yogurt-like product accompanied by protein acidic coagulation. It is not known whether the coagulation of soy protein during fermentation influences protein digestibility when ingested. In the present study, soymilk (pH 6.3) and soy yogurt (SY) at different pH (6.0, 5.7, 5.4 and 5.1) were subjected to in vitro gastrointestinal digestion (GIS) and a comparison study was conducted. RESULTS: Lactic fermentation allowed the pH of soymilk to reduce gradually to 5.1 in 330.0 min. A decline in pH resulted in the volume-weighted mean diameters D[4,3] and D[v,90] increasing from 0.81 to 97 µm and 1.82 to 273 µm, respectively. Predominant proteins lost their solubility between pH 6.0 and 5.7. Application of GIS allowed SY samples, especially SY-5.7, SY-5.4 and SY-5.1, to reveal particles with a predominant peak at approximately 10 µm and also lower soluble proteins compared to soymilk, with reduction percentages of 18%, 28% and 43%. The cleavage pattern of soy protein during GIS was scarcely affected by the sample pH. However, a lower quantity of the band at 33.9 kDa was found in SY-5.7, SY-5.4 and SY-5.1. CONCLUSION: The results of the present study demonstrate that lactic fermentation altered soy protein digestibility. With the process of protein coagulation, SY-5.7, 5.4 and 5.1 had a lower bioaccessible protein content compared to that of soymilk. © 2018 Society of Chemical Industry.


Assuntos
Leite de Soja/metabolismo , Proteínas de Soja/metabolismo , Iogurte/análise , Digestão , Fermentação , Manipulação de Alimentos , Trato Gastrointestinal/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Leite de Soja/química , Proteínas de Soja/química
11.
J Food Sci Technol ; 55(4): 1244-1255, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29606739

RESUMO

The effects of solid-state fermentation with Cordyceps militaris (L.) Fr. on the nutritional, physicochemical, and functional properties as well as angiotensin I converting enzyme (ACE) inhibitory activity of red bean (Phaseolus angularis [Willd.] W.F. Wight.) flour were determined. Fermentation increased the amount of small peptides but significantly decreased large peptides. Fermentation also increased proteins and essential amino acids (by 9.31 and 13.89%, respectively) and improved the in vitro protein digestibility (6.54%) of red beans. Moreover, fermentation increased the water holding capacity (from 2.36 to 2.59 mL/g), fat absorption capacity (from 84.65 to 114.55%), emulsion activity (from 10.96 to 52.77%), emulsion stability (from 5.43 to 53.82%), and foaming stability (from 11.95 to 20.68%). Fermented red bean flour achieved a lower least gelation concentration of 14% than that of the control (18%). In contrast to the non-fermented red bean, the fermented red bean showed ACE inhibitory activity, with IC50 value of 0.63 mg protein/mL. Overall, fermentation improved the nutritional, physicochemical, and functional properties as well as the biological activity of red bean flour. Thus, fermented red bean flour may serve as a novel nutritional and functional ingredient for applications in food design.

12.
Metab Eng ; 41: 115-124, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28392294

RESUMO

Medium-chain fatty acids (MCFAs, 6-10 carbons) are valuable precursors to many industrial biofuels and chemicals, recently engineered reversal of the ß-oxidation (r-BOX) cycle has been proposed as a potential platform for efficient synthesis of MCFAs. Previous studies have made many exciting achievements on functionally characterizing four core enzymes of this r-BOX cycle. However, the information about bottleneck nodes in this cycle is elusive. Here, a quantitative assessment of the inherent limitations of this cycle was conducted to capitalize on its potential. The selection of the core ß-oxidation reversal enzymes in conjunction with acetyl-CoA synthetase endowed the ability to synthesize about 1g/L MCFAs. Furthermore, a gene dosage experiment was developed to identify two rate-limiting enzymes (acetyl-CoA synthetase and thiolase). The de novo pathway was then separated into two modules at thiolase and MCFA production titer increased to 2.8g/L after evaluating different construct environments. Additionally, the metabolism of host organism was reprogrammed to the desired biochemical product by the clustered regularly interspaced short palindromic repeats interference system, resulted in a final MCFA production of 3.8g/L. These findings described here identified the inherent limitations of r-BOX cycle and further unleashed the lipogenic potential of this cycle, thus paving the way for the development of a bacterial platform for microbial production of high-value oleo-chemicals from low-value carbons in a sustainable and environmentally friendly manner.


Assuntos
Acetato-CoA Ligase , Proteínas de Escherichia coli , Escherichia coli , Ácidos Graxos , Engenharia Metabólica , Acetato-CoA Ligase/biossíntese , Acetato-CoA Ligase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Oxirredução
13.
Metab Eng ; 44: 313-324, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29122703

RESUMO

Previous studies have made many exciting achievements on pushing the functional reversal of beta-oxidation cycle (r-BOX) to more widespread adoption for synthesis of a wide variety of fuels and chemicals. However, the redox cofactor requirement for the efficient operation of r-BOX remains unclear. In this work, the metabolic efficiency of r-BOX for medium-chain fatty acid (C6-C10, MCFA) production was optimized by redox cofactor engineering. Stoichiometric analysis of the r-BOX pathway and further experimental examination identified NADH as a crucial determinant of r-BOX process yield. Furthermore, the introduction of formate dehydrogenase from Candida boidinii using fermentative inhibitor byproduct formate as a redox NADH sink improved MCFA titer from initial 1.2g/L to 3.1g/L. Moreover, coupling of increasing the supply of acetyl-CoA with NADH to achieve fermentative redox balance enabled product synthesis at maximum titers. To this end, the acetate re-assimilation pathway was further optimized to increase acetyl-CoA availability associated with the new supply of NADH. It was found that the acetyl-CoA synthetase activity and intracellular ATP levels constrained the activity of acetate re-assimilation pathway, and 4.7g/L of MCFA titer was finally achieved after alleviating these two limiting factors. To the best of our knowledge, this represented the highest titer reported to date. These results demonstrated that the key constraint of r-BOX was redox imbalance and redox engineering could further unleash the lipogenic potential of this cycle. The redox engineering strategies could be applied to acetyl-CoA-derived products or other bio-products requiring multiple redox cofactors for biosynthesis.


Assuntos
Acetilcoenzima A , Candida , Coenzimas , Ácidos Graxos , NADP , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Candida/genética , Candida/metabolismo , Coenzimas/genética , Coenzimas/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , NADP/genética , NADP/metabolismo , Oxirredução
14.
J Ind Microbiol Biotechnol ; 44(7): 1083-1095, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28324236

RESUMO

Resveratrol has been the subject of numerous scientific investigations due to its health-promoting activities against a variety of diseases. However, developing feasible and efficient microbial processes remains challenging owing to the requirement of supplementing expensive phenylpropanoic precursors. Here, various metabolic engineering strategies were developed for efficient de novo biosynthesis of resveratrol. A recombinant malonate assimilation pathway from Rhizobium trifolii was introduced to increase the supply of the key precursor malonyl-CoA and simultaneously, the clustered regularly interspaced short palindromic repeats interference system was explored to down-regulate fatty acid biosynthesis pathway to inactivate the malonyl-CoA consumption pathway. Down-regulation of fabD, fabH, fabB, fabF, fabI increased resveratrol production by 80.2, 195.6, 170.3, 216.5 and 123.7%, respectively. Furthermore, the combined effect of these genetic perturbations was investigated, which increased the resveratrol titer to 188.1 mg/L. Moreover, the efficiency of this synthetic pathway was improved by optimizing the expression level of the rate-limiting enzyme TAL based on reducing mRNA structure of 5' region. This further increased the final resveratrol titer to 304.5 mg/L. The study described here paves the way to the development of a simple and economical process for microbial production of resveratrol.


Assuntos
Escherichia coli/genética , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Estilbenos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Meios de Cultura/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Malonil Coenzima A/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Conformação de Ácido Nucleico , Resveratrol
15.
Int J Mol Sci ; 18(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257062

RESUMO

Novel bioactive components have greatly attracted attention as they demonstrate health benefits. Reversed-phase high performance liquid chromatography (RP-HPLC) showed that isoflavonoid compounds of kudzu root (Pueraria lobata) fermented by Eurtotium cristatum and extracted using de-ionized water were higher active compared with non-fermented. A model of H2O2-inducd cell damage was built using rat pheochromocytoma line 12 (PC12) cell to observe the protective effect of non-fermented kudzu root (Pueraria lobata) (NFK) and fermented kudzu root (Pueraria lobata) (FK). Cell viability and apoptosis were analyzed through inverted microscopy and flow cytometry. The level of lactate dehydrogenase, catalase activity, superoxide dismutase, glutathione, and reactive oxygen species (ROS) were evaluated. Results showed that NFK and FK could significantly protect PC12 cell against damage caused by H2O2-induced oxidative stress. The intracellular antioxidant system was increased, protected the cell membrane inhibit H2O2-induced apoptosis by scavenging of ROS. Moreover, NFK and FK regulated the cell cycle to prevent cell apoptosis. Isoflavonoid from the kudzu root especially fermented kudzu root with E. cristatum are potentially therapeutic drugs against diseases induced by oxidative damage.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Pueraria/química , Animais , Antioxidantes/química , Fermentação , Flavonoides/análise , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/química , Células PC12 , Extratos Vegetais/química , Raízes de Plantas/química , Ratos
16.
Glycoconj J ; 32(1-2): 17-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25417068

RESUMO

In the present study, a released exopolysaccharide (r-EPS1) from L. plantarum 70810 was modified by acetylation, phosphorylation and carboxymethylation. Scanning electron micrograph (SEM) and thermogravimetric analysis (TGA) showed the r-EPS1 derivatives had different surface morphology and thermal behavior. Compared with r-EPS1, the derivatives exhibited stronger antioxidant and antitumor activities. The study provided experimental evidences that chemical modification could be an effective way to improve the bioactivity of exopolysaccharide from L. plantarum 70810. It is noted that these derivatives could be explored as novel potential antioxidant and antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Lactobacillus plantarum/química , Polissacarídeos Bacterianos/farmacologia , Acetilação , Antineoplásicos/química , Antioxidantes/química , Células HT29 , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Lactobacillus plantarum/metabolismo , Metilação , Fosforilação , Polissacarídeos Bacterianos/análogos & derivados , Polissacarídeos Bacterianos/química
17.
Int J Food Sci Nutr ; 65(6): 667-72, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24720564

RESUMO

The equol contents of 32 samples of Chinese stinky tofu from different manufacturers in China mainland were determined. The results showed that 15 samples of raw stinky tofu contained substantial amounts of equol (1.16 ± 1.69 mg/100 g, wet basis), in which sample c-4 elicited the highest equol of 6.65 mg/100 g, whereas significantly lower equol contents were found in 17 fried samples (0.15 ± 0.14 mg/100 g, wet basis). A significant strong correlation between equol contents and the amino nitrogen contents (p < 0.01, Pearson correlation coefficient 0.725) was observed which indicated the eqoul content was associated with the fermentation extent. Cooking methods influenced the equol contents. Microwaving and frying tofu rapped with starch paste improved the equol contents, whereas deep frying, stir frying, and stewing had negative effects. The study demonstrated stinky tofu served as a good equol dietary source. Extensive fermentation and delicate cooking approaches were necessary for a high-equol final product.


Assuntos
Culinária , Dieta , Equol/análise , Fermentação , Glycine max/metabolismo , Alimentos de Soja/análise , China , Humanos
18.
Antioxidants (Basel) ; 13(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38539793

RESUMO

The active metabolite (S)-equol, derived from daidzein by gut microbiota, exhibits superior antioxidative activity compared with its precursor and plays a vital role in human health. As only 25% to 50% of individuals can naturally produce equol when supplied with isoflavone, we engineered probiotic E. coli Nissle 1917 (EcN) to convert dietary isoflavones into (S)-equol, thus offering a strategy to mimic the gut phenotype of natural (S)-equol producers. However, co-fermentation of EcN-eq with fecal bacteria revealed that gut microbial metabolites decreased NADPH levels, hindering (S)-equol production. Transcriptome analysis showed that the quorum-sensing (QS) transcription factor SdiA negatively regulates NADPH levels and (S)-equol biosynthesis in EcN-eq. Screening AHLs showed that SdiA binding to C10-HSL negatively regulates the pentose phosphate pathway, reducing intracellular NADPH levels in EcN-eq. Molecular docking and dynamics simulations investigated the structural disparities in complexes formed by C10-HSL with SdiA from EcN or E. coli K12. Substituting sdiA_EcN in EcN-eq with sdiA_K12 increased the intracellular NADPH/NADP+ ratio, enhancing (S)-equol production by 47%. These findings elucidate the impact of AHL-QS in the gut microbiota on EcN NADPH metabolism, offering insights for developing (S)-equol-producing EcN probiotics tailored to the gut environment.

19.
Bioresour Technol ; 393: 130145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042430

RESUMO

Medium-chain fatty acids (MCFAs) are essential chemical feedstocks. Microbial production of MCFAs offers an attractive alternative to conventional methods, but the costly media and external inducers limit its practical application. To address this issue and make MCFA production more cost-effective, an E.coli platform was developed using soy whey as a medium and galactose as an autoinducer. We first designed an efficient, stringent, homogeneous, and robust galactose-based autoinduction system for the expression of pathway enzymes by rationally engineering the promoter of the galactose-proton symporter (GalP). Subsequently, the intracellular acetyl-CoA availability and NADH regeneration were enhanced to improve the reversal of the ß-oxidation cycle. The resulting strain yielded 8.20 g/L and 16.42 g/L MCFA in pH-controlled batch fermentation and fed-batch fermentation with glucose added using soy whey as medium, respectively. This study provided a cost-effective and promising platform for MCFA production, as well as future strain development for other value-added chemicals production.


Assuntos
Escherichia coli , Ácidos Graxos , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Galactose/metabolismo , Soro do Leite/metabolismo , Análise Custo-Benefício , Engenharia Metabólica/métodos , Proteínas do Soro do Leite/metabolismo , Fermentação
20.
J Agric Food Chem ; 72(11): 5849-5859, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38468401

RESUMO

Daidzein is a major isoflavone compound with an immense pharmaceutical value. This study applied a novel P450 CYP82D26 which can biosynthesize daidzein from (2S)-naringenin. However, the recombinant P450 systems often suffer from low coupling efficiency, leading to an electron transfer efficiency decrease and harmful reactive oxygen species release, thereby compromising their stability and catalytic efficiency. To address these challenges, the SH3-GBD-PDZ (SGP) protein scaffold was applied to assemble a multienzyme system comprising CYP82D26, P450 reductase, and NADP+-dependent aldehyde reductase in desired stoichiometric ratios. Results showed that the coupling efficiency of the P450 system was significantly increased, primarily attributed to the channeling effect of NADPH resulting from the proximity of tethered enzymes and the electrostatic interactions between NADPH and SGP. Assembling this SGP-scaffolded assembly system in Escherichia coli yielded a titer of 240.5 mg/L daidzein with an 86% (2S)-naringenin conversion rate, which showed a 9-fold increase over the free enzymes of the P450 system. These results underscore the potential application of the SGP-scaffolded multienzyme system in enhancing the coupling and catalytic efficiency of the P450 system.


Assuntos
Flavanonas , Isoflavonas , NADPH-Ferri-Hemoproteína Redutase , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas , Isoflavonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA