Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(23): 38921-38938, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017983

RESUMO

Focused higher-order Poincaré (HOP) beams are of particular interest because they facilitate understanding the exotic properties of structured light and their applications in classical physics and quantum information. However, generating focused HOP beams using metasurfaces is challenging. In this study, we proposed a metasurface design comprising two sets of metal nanoslits for generating coaxially focused HOP beams. The nanoslits were interleaved on equispaced alternating rings. The initial rings started at the two adjacent Fresnel zones to provide opposite propagation phases for overall elimination of the co-polarization components. With the designed hyperbolic and helical profiles of the geometric phases, the two vortices of the opposite cross-circular-polarizations were formed and selectively focused, realizing HOP beams of improved quality. Simulations and experimental results demonstrated the feasibility of the proposed metasurface design. This study is of significance in the integration of miniaturized optical devices and enriches the application areas of metasurfaces.

2.
Opt Express ; 30(26): 47287-47303, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558660

RESUMO

Ultrashort optical vortex pulses carrying spatiotemporal orbital angular momentum (OAM) have inspired versatile applications such as the micromachining of integrated quantum chips and discoveries such as optical toroidal structures and OAM-carrying X-waves. Generating high-quality ultrashort vortices with controllable topological charges remains a crucial issue. Thus, we propose a rotationally interleaved multispiral to generate such vortices. A multispiral comprises multiple identical spirals rotated around the center in the equal-azimuthal interval and interleaved in equal-radius increments; this structure overcomes the previous structural asymmetry of the single spiral and improves the vortex quality. Accordingly, we conducted theoretical analyses, numerical simulations, and experimental investigations that demonstrated the feasibility of multispirals in generating the ultrashort vortices with symmetric distributions and flexibly controlling the topological charges. The proposed study is significant for broader applications involving ultrashort vortices and extensive investigations in related areas such as research on electron vortices, plasmonic vortices, and other matter vortices.

3.
Opt Express ; 22(2): 1302-12, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24515135

RESUMO

The derived two-dimensional autocorrelation function of speckles in the deep Fresnel region shows that it is related to the scattering of rough surface with the scattered intensity profile acting as the aperture function. We propose the method that is convenient for measuring surface parameters from the normalized autocorrelation function of speckles acquired with a microscopic imaging system. In experiment, a multi-scale behavior of the speckles has been identified, which is compatible with fractal character. With the speckle intensity data, we calculate the normalized autocorrelation function of the speckles and extract the roughness, the lateral correlation length and the roughness exponent of the random surface samples by fitting the expression to the autocorrelation function data. Comparison of the results with an atomic force microscopic measurements shows that our method has a satisfying accuracy.


Assuntos
Algoritmos , Interpretação Estatística de Dados , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Força Atômica/métodos , Refratometria/métodos , Propriedades de Superfície
4.
J Opt Soc Am A Opt Image Sci Vis ; 24(11): 3636-43, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17975589

RESUMO

We analyze theoretically the diffraction of phase gratings in the deep Fresnel field on the basis of the theory of scalar diffraction and Green's theorem and present the general formula for the diffraction intensity of a one-dimensional sinusoidal phase grating. The numerical calculations show that in the deep Fresnel region the diffraction distribution can be described by designating three characteristic regions that are influenced by the parameters of the grating. The microlensing effect of the interface of the phase grating provides the corresponding explanation. Moreover, according to the viewpoint that the diffraction intensity distribution is the result of the interference of the diffraction orders of the grating, we find that the diffraction patterns, depending on the carved depth of the phase grating, are determined by the contributing diffraction orders, their relative power, and the quasi-Talbot effect of the phase grating, which results from the second meeting of the diffraction orders carrying most of the power of the total field, as in the case of the amplitude grating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA