RESUMO
Lighting accounts for one-fifth of global electricity consumption1. Single materials with efficient and stable white-light emission are ideal for lighting applications, but photon emission covering the entire visible spectrum is difficult to achieve using a single material. Metal halide perovskites have outstanding emission properties2,3; however, the best-performing materials of this type contain lead and have unsatisfactory stability. Here we report a lead-free double perovskite that exhibits efficient and stable white-light emission via self-trapped excitons that originate from the Jahn-Teller distortion of the AgCl6 octahedron in the excited state. By alloying sodium cations into Cs2AgInCl6, we break the dark transition (the inversion-symmetry-induced parity-forbidden transition) by manipulating the parity of the wavefunction of the self-trapped exciton and reduce the electronic dimensionality of the semiconductor4. This leads to an increase in photoluminescence efficiency by three orders of magnitude compared to pure Cs2AgInCl6. The optimally alloyed Cs2(Ag0.60Na0.40)InCl6 with 0.04 per cent bismuth doping emits warm-white light with 86 ± 5 per cent quantum efficiency and works for over 1,000 hours. We anticipate that these results will stimulate research on single-emitter-based white-light-emitting phosphors and diodes for next-generation lighting and display technologies.
RESUMO
As an inorganic photoabsorber, selenium was used in a mesoscopic solar cell with a hybrid organic-inorganic structure of TiO2/Se/P3HT/PEDOT:PSS/Ag, in which the Se layer was prepared by vacuum thermal deposition and post thermal treatment. The microstructure, photoelectrical properties, as well as the rationality in structural design of the solar cell were illustrated in detail. Finally, the hybrid solar cell demonstrated a photoelectric conversion efficiency of 2.63%.
RESUMO
Organic-inorganic lead halide perovskite materials have received great attention in recent years. However, the poor stability of these materials severely limits the commercial application of perovskite devices. Here, we used thiophene-2-ethylammonium iodide (TEAI) material as the organic spacer NH4SCN and NH4Cl as the dual additives to realize high-stability two-dimensional (2D)/three-dimensional (3D) perovskite thin films for perovskite photodetectors. Then, we investigated different effects of the dual additives on the orientation and crystallinity of the perovskite films. At room temperature, the optimized 2D/3D perovskite photodetectors exhibit good performance with high external quantum efficiency (EQE) (72%), large responsivity (0.36 A/W), high detectivity (2.46 × 1012 Jones at the bias of 0 V), high response frequency (1.7 MHz), and improved stability (retains 90% photocurrent after 2000 h storage in RT and 10% RH conditions). Based on these devices, a dual-channel optical transport system and a light-intensity adder are achieved. The results of this study indicate that, with a simple process, the TEAI and dual-additives based 2D/3D perovskite photodetectors have promising applications in light-intensity adder and optical communication systems.
RESUMO
The photodetector based on methylammonium lead iodide (MAPbI3) is a promising device for wide wavelength range (380-780 nm) sensitivity. However, its industrial application is limited by the relatively low response speed to the light signal, which has received little attention. Only a few reports show low-bandwidth characteristics (less than 1 MHz at 0.1 cm2). Here, when a cosolvent strategy to manipulate the thickness and the crystallinity of the MAPbI3 film is adopted, photodetectors with a -3 dB bandwidth of 4.7 MHz are achieved (at 0.16 cm2 photo detecting area). The performance is significantly better than most of the organic and hybrid photodetectors reported so far. Based on this photodetector and an organic light-emitting diode (OLED), an organic optocoupler system with 1 MHz response frequency is successfully set up. Our results suggest that thickness-manipulated cosolvent strategy is a promising method in high-speed MAPbI3-based photodetectors.
RESUMO
Interfacial passivation engineering plays a crucial role in the explosive development of perovskite solar cells (PSCs). However, previous studies on passivation layers mainly focused on the defect-passivation mechanism rather than the interfacial charge transport efficiency. Here, by precisely tuning the interplanar spacing of the ammonium iodide passivation layer, we elucidate the promoting effect of the reduced interplanar spacing of the passivation layer on the photogenerated hole tunneling efficiency at the interface of the hole transport layer and perovskite. Compared with the commonly used phenethylammonium iodide passivation layer with a wider interplanar spacing, 2-chlorobenzylammonium iodide with a narrower interplanar spacing can help break through the thickness limitation of the passivation layer, thus showing a better comprehensive passivation effect. Therefore, we demonstrate photovoltaic devices with an enhanced fill factor (FF) and open-circuit voltage (VOC), which yield a high power conversion efficiency (PCE) of up to 23.1%. We thus identify an efficient scheme to achieve optimal passivation conditions for high-performance PSCs.
RESUMO
In perovskite solar cells (PSCs), the hole-transport layer (HTL) plays an essential role in effective charge transport and extraction from the photoexcited perovskite, thus being significant for overall power conversion efficiency (PCE) and operational stability. So far, spiro-MeOTAD has been the most widely used HTL despite its inherent drawbacks, such as highly hygroscopic nature, poor conductivity, and mismatched energy-level alignment with the perovskite active layer. Here, a spiro-MeOTAD-based composite HTL modified by microwave method-synthesized carbon quantum dots (CQDs) was proposed and demonstrated as a promising HTL candidate for high-performance PSCs. The results demonstrated that the CQDs/spiro-MeOTAD composite HTL possesses several appealing characteristics for PSC applications, such as suitable energy levels for hole extraction, passivated interfacial trap states, and reduced recombination losses. Consequently, as compared to the control one using an unmodified spiro-MeOTAD HTL, (FAPbI3)0.95(MAPbBr3)0.05-based planar PSCs with composite HTL exhibit notably enhanced PCE and operational stability. Remarkably, an encouraging PCE of 20.41% was achieved for the champion device, and much improved operational stability was also demonstrated under continuous AM1.5 illumination with maximum power point (MPP) tracking conditions.
RESUMO
The perovskite solar cell has emerged rapidly in the field of photovoltaics as it combines the merits of low cost, high efficiency, and excellent mechanical flexibility for versatile applications. However, there are significant concerns regarding its operational stability and mechanical robustness. Most of the previously reported approaches to address these concerns entail separate engineering of perovskite and charge-transporting layers. Herein we present a holistic design of perovskite and charge-transporting layers by synthesizing an interpenetrating perovskite/electron-transporting-layer interface. This interface is reaction-formed between a tin dioxide layer containing excess organic halide and a perovskite layer containing excess lead halide. Perovskite solar cells with such interfaces deliver efficiencies up to 22.2% and 20.1% for rigid and flexible versions, respectively. Long-term (1000 h) operational stability is demonstrated and the flexible devices show high endurance against mechanical-bending (2500 cycles) fatigue. Mechanistic insights into the relationship between the interpenetrating interface structure and performance enhancement are provided based on comprehensive, advanced, microscopic characterizations. This study highlights interface integrity as an important factor for designing efficient, operationally-stable, and mechanically-robust solar cells.
RESUMO
As an indispensable component of perovskite solar cells (PSCs), the commonly used Au and Ag electrodes still have some problems such as high cost and instability issues with regard to being corroded by iodide ions. In this paper, we report stacking perovskite solar cells (S-PSCs), which can avoid the use of precious metal electrodes and reduce the cost of devices and the requirements of equipment compared to conventional PSCs. The S-PSCs are composed of two semicells: a photoanode and a counter electrode (CE). For stacked devices, effective contact of the photoanode/CE interface is very important to the performance of the device. We used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the electrode and modified it by hexamethylenediammonium diiodide (HDADI2) to improve its physical and electrical properties. The surface of the HDADI2-modified PEDOT:PSS becomes rough and achieves higher adhesion, which enables the photoanode and CE to be sufficiently connected. In addition, the energy-level structure of the HDADI2-modified PEDOT:PSS matches better with that of the adjacent functional layers. Therefore, the S-PSCs performance has been significantly improved. Under an illumination area of 1 cm2, the power-conversion efficiency (PCE) of the S-PSCs can reach 15.21%. Moreover, the S-PSCs can be disassembled and assembled flexibly and repeatedly disassembled 500 times with almost no change in the PCE. This has a positive impact on cell maintenance and modular production.
RESUMO
Amorphous NbOx electron transport layer (ETL) shows great potential for boosting the power conversion efficiency (PCE) of perovskite solar cells (PSCs) at low temperatures (<100 °C). To date, it is still a challenge to simultaneously control the hydrolysis of the NbOx precursor solution and reduce the impurities of NbOx ETLs during low-temperature solution processing under ambient conditions. Herein, for the first time, we report ozone (O3) as a strong ligand to stabilize Nb salt solutions under ambient conditions. The above procedure not only enables the formation of a highly repeatable amorphous NbOx film by suppressing the hydrolysis of the solution but also reduces the OH content in the film, which decreases the defect intensity and improves the conductivity of the NbOx ETL. Thus, the formation of highly repeatable NbOx ETL-based PSCs are obtained; moreover, these PSCs have high PCE values of 19.54 and 16.42% on rigid and flexible substrates, respectively, much higher than the devices based on ETLs from a solution without an O3 treatment.
RESUMO
The electron-selective layer (ESL) is an indispensable component of perovskite solar cells (PSCs) and is responsible for the collection of photogenerated electrons. Preparing ESL at a low temperature is significant for future fabrication of flexible PSCs. In this work, solution-processed amorphous WO(x) thin film was prepared facilely at low temperature and used as ESL in PSCs. Results indicated that a large quantity of nanocaves were observed in the WO(x) thin film. In comparison with the conventional TiO2 ESL, the WO(x) ESL exhibited comparable light transmittance but higher electrical conductivity. Compared with the TiO2-based PSCs, PSCs that use WO(x) ESL exhibited comparable photoelectric conversion efficiency, larger short-circuit current density, but lower open-circuit voltage. Electrochemical characterization indicated that the unsatisfied open-circuit voltage and fill factor were caused by the inherent charge recombination. This study demonstrated that this material is an excellent candidate for ESL.
RESUMO
The ionic liquid N-butyl-N'-(4-pyridylheptyl)imidazolium bis(trifluoromethane)sulfonimide (BuPyIm-TFSI) was used as a dual-functional additive to improve the electrical properties of the hole-transporting material (HTM) for perovskite solar cells. BuPyIm-TFSI improved the conductivity of HTM and reduced the dark current of the solar cell simultaneously, thereby greatly increasing the power conversion efficiency.
RESUMO
Low cost, high efficiency, and stability are straightforward research challenges in the development of organic-inorganic perovskite solar cells. Organolead halide is unstable at high temperatures or in some solvents. The direct preparation of a carbon layer on top becomes difficult. In this study, we successfully prepared full solution-processed low-cost TiO2/CH3NH3PbI3 heterojunction (HJ) solar cells based on a low-temperature carbon electrode. Power conversion efficiency of mesoporous (M-)TiO2/CH3NH3PbI3/C HJ solar cells based on a low-temperature-processed carbon electrode achieved 9%. The devices of M-TiO2/CH3NH3PbI3/C HJ solar cells without encapsulation exhibited advantageous stability (over 2000 h) in air in the dark. The ability to process low-cost carbon electrodes at low temperature on top of the CH3NH3PbI3 layer without destroying its structure reduces the cost and simplifies the fabrication process of perovskite HJ solar cells. This ability also provides higher flexibility to choose and optimize the device, as well as investigate the underlying active layers.