Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 219: 115035, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36513128

RESUMO

Recently, advanced oxidation processes (AOPs) based upon peracetic acid (PAA) with high efficiency for degrading aqueous organic contaminants have attracted extensive attention. Herein, a novel metal-free N-doped carbonaceous catalyst, namely, carbonized polyaniline (CPANI), was applied to activate PAA to degrade phenolic and pharmaceutical pollutants. The results showed that the CPANI/PAA system could effectively degrade 10 µM phenol in 60 min with low concentrations of PAA (0.1 mM) and catalyst (25 mg L-1). This system also performed well within a wide pH range of 5-9 and displayed high tolerance to Cl-, HCO3- and humic acid. The nonradical pathway [singlet oxygen (1O2)] was found to be the dominant pathway for degrading organic contaminants in the CPNAI/PAA system. Systematic characterization revealed that the graphitic N, pyridinic N, carbonyl groups (CO) and defects played the role of active sites on CPANI during the activation of PAA. The catalytic capacity of spent CPANI could be conveniently recovered by thermal treatment. The findings will be helpful for the application of metal-free carbonaceous catalyst/PAA processes in decontaminating water.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Ácido Peracético , Metais , Oxirredução , Fenóis , Água
2.
Chemosphere ; 291(Pt 3): 132947, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34800509

RESUMO

Peracetic acid (PAA) oxidation is an emerging technology in water disinfection and purification. This study evaluated the oxidation of three pyrazolone pharmaceuticals (i.e., Aminopyrine (AMP), Antipyrine (ANT), and Isopropylphenazone (PRP) by PAA. Experimental results showed that PAA exhibited structure selectivity to the above three pharmaceuticals and oxidized AMP with the highest reactivity. The degradation kinetics of AMP was investigated by calculating the apparent second-order rate constants (kapp) under different initial pH. Through kinetic simulation, the second-order rate constants of elementary reactions between AMP (i.e., neutral (AMP0) and protonated (AMP+) species) with PAA (i.e., neutral (PAA0) and anionic (PAA-) species) were obtained to be 0.34 ± 0.077 M-1 s-1(k"AMP+, PAA0), 0.89 ± 0.091 M-1 s-1(k"AMP0, PAA-) and 5.94 ± 0.142 M-1 s-1(k"AMP0, PAA0), respectively. The PAA could oxidize AMP via electrophilic attack, and the degradation site of AMP was confirmed to be the central nitrogen of -N(CH3)2 with the highest relative electrophilicity (sk-/sk+, 48.8614) by Density Functional Theory (DFT) calculation. The intermediates/products of AMP degradation were identified by high-performance liquid chromatography-mass spectrometry (LC-MS/MS), and the transformation pathways of AMP during PAA oxidation were inferred to be hydroxylation, demethylation, and CC cleavage. The genetic toxicity of AMP contaminated water could be reduced after PAA oxidation, which was evaluated by the micronucleus test of Vicia faba root tips.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Aminopirina , Cromatografia Líquida , Peróxido de Hidrogênio , Cinética , Oxirredução , Ácido Peracético , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA