Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 12(14): 8792-8803, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424807

RESUMO

In this research, the core objective is to explore the effect of super-absorbent polymer material (poly(sodium acrylate)) on the heat storage performance of magnesium sulfate and to investigate the heat transfer behavior of 13X-zeolite, nano-aluminum oxide (nano-Al2O3) and poly(sodium acrylate) modified magnesium sulfate in a reactor. Finally it provides support for future material and reactor design. All characterizations and performance tests were done in the laboratory and a numerical simulation method was used to investigate the heat transfer behavior of the reactor. Through hydrothermal treatment, bulk MgSO4·6H2O was changed into nanoparticles (200-500 nm) when composited with poly(sodium acrylate), 13X-zeolite and nano-Al2O3. Among these materials, MgSO4·6H2O shows the highest activation energy (36.8 kJ mol-1) and the lowest energy density (325 kJ kg-1). The activation energy and heat storage energy density of nano-Al2O3 modified composite material MA-1 are 28.5 kJ mol-1 and 1305 kJ kg-1, respectively. Poly(sodium acrylate) modified composite material, MPSA-3, shows good heat storage energy density (1100 kJ kg-1) and the lowest activation energy (22.3 kJ mol-1) due its high water-absorbing rate and dispersing effect. 13X-zeolite modified composite material MZ-2 shows lower activation energy (32.4 kJ mol-1) and the highest heat storage density (1411 kJ kg-1), which is 4.3 times higher than that of pure magnesium sulfate hexahydrate. According to the heat transfer numerical simulation, hygroscopic additives could prominently change the temperature distribution in the reactor and efficiently release heat to the thermal load side. The experimental and numerical simulation temperatures are similar. This indicates that the result of the numerical simulation is very close to the actual heat transfer behavior. This reactor could output heat at around 50 °C and absorb heat in the range of 100-200 °C. All these results further prove the strategy that thermochemical nanomaterial synthesis technology combined with material-reactor heat transfer numerical simulation is feasible for future material and reactor design.

2.
Sci Rep ; 5: 9932, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25909481

RESUMO

It is very interesting that magic electron affection promotes growth of nanocrystals due to nanoscale characteristics of electronic de Broglie wave which produces resonance to transfer energy to atoms. In our experiment, it was observed that silicon nanocrystals rapidly grow with irradiation of electron beam on amorphous silicon film prepared by pulsed laser deposition (PLD), and silicon nanocrystals almost occur in sphere shape on smaller nanocrystals with less irradiation time of electron beam. In the process, it was investigated that condensed structures of silicon nanocrystals are changed with different impurity atoms in silicon film, in which localized states emission was observed. Through electron beam irradiation for 15 min on amorphous Si film doped with oxygen impurity atoms by PLD process, enhanced photoluminescence emission peaks are observed in visible light. And electroluminescence emission is manipulated into the optical communication window on the bigger Si-Yb-Er nanocrystals after irradiation of electron beam for 30 min.

3.
Dongwuxue Yanjiu ; 34(2): 89-96, 2013 Apr.
Artigo em Zh | MEDLINE | ID: mdl-23572357

RESUMO

The pig-tailed macaque is an important non-human primate experimental animal model that has been widely used in the research of AIDS and other diseases. Pig-tailed macaques include Mentawai macaques (Macaca pagensis), Sunda pig-tailed macaques (M. nemestrina) and northern pig-tailed macaques (M. leonina). Northern pig-tailed macaques inhabit China and surrounding Southeast Asia countries. To our knowledge, no reports have been published regarding the hematology and blood chemistry parameters of northern pig-tailed macaques, which are important for the objective evaluation of experimental results. We measured and analyzed 18 hematology parameters and 13 blood chemistry parameters in juvenile (aged 2-4 years) and adult (aged 5-10 years) northern pig-tailed macaques. We found that red blood cells, hemoglobin and alkaline phosphatase values were lower in female macaques than male macaques in both juvenile and adult groups. White blood cells, lymphocyte, monocytes, platelet distribution width, cholesterol, aspartate aminotransferase and alkaline phosphatase values were higher in juvenile macaques than adult macaques, while creatinine and triglycerides values were lower in juvenile macaques. Mean corpuscular hemoglobin and creatinine values were positively correlated with weight in juvenile groups. In adult groups, mean corpuscular hemoglobin, percentage of granulocyte, hemoglobin and creatinine were also positively correlated with weight, and lymphocyte, percentage of lymphocyte, red cell distribution width, aspartate aminotransferase and cholesterol values were negatively correlated with weight. The results suggest that age, gender and weight of northern pig-tailed macaques affected their hematology and blood chemistry parameters. This hematological and blood chemistry study has great significance in biomedical research and animal models using northern pig-tailed macaque as an experimental animal.


Assuntos
Análise Química do Sangue , Macaca nemestrina/sangue , Síndrome da Imunodeficiência Adquirida/sangue , Síndrome da Imunodeficiência Adquirida/virologia , Animais , Feminino , HIV-1/fisiologia , Hematologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA