Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(31): e2403331121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39052835

RESUMO

Androgen receptor (AR) is a main driver for castration-resistant prostate cancer (CRPC). c-Myc is an oncogene underlying prostate tumorigenesis. Here, we find that the deubiquitinase USP11 targets both AR and c-Myc in prostate cancer (PCa). USP11 expression was up-regulated in metastatic PCa and CRPC. USP11 knockdown (KD) significantly inhibited PCa cell growth. Our RNA-seq studies revealed AR and c-Myc as the top transcription factors altered after USP11 KD. ChIP-seq analysis showed that either USP11 KD or replacement of endogenous USP11 with a catalytic-inactive USP11 mutant significantly decreased chromatin binding by AR and c-Myc. We find that USP11 employs two mechanisms to up-regulate AR and c-Myc levels: namely, deubiquitination of AR and c-Myc proteins to increase their stability and deubiquitination of H2A-K119Ub, a repressive histone mark, on promoters of AR and c-Myc genes to increase their transcription. AR and c-Myc reexpression in USP11-KD PCa cells partly rescued cell growth defects. Thus, our studies reveal a tumor-promoting role for USP11 in aggressive PCa through upregulation of AR and c-Myc activities and support USP11 as a potential target against PCa.


Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myc , Receptores Androgênicos , Tioléster Hidrolases , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células/genética , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Ubiquitinação , Regulação para Cima
2.
Nucleic Acids Res ; 51(2): e11, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36478271

RESUMO

Alternative splicing (AS) is an important mechanism in the development of many cancers, as novel or aberrant AS patterns play an important role as an independent onco-driver. In addition, cancer-specific AS is potentially an effective target of personalized cancer therapeutics. However, detecting AS events remains a challenging task, especially if these AS events are novel. This is exacerbated by the fact that existing transcriptome annotation databases are far from being comprehensive, especially with regard to cancer-specific AS. Additionally, traditional sequencing technologies are severely limited by the short length of the generated reads, which rarely spans more than a single splice junction site. Given these challenges, transcriptomic long-read (LR) sequencing presents a promising potential for the detection and discovery of AS. We present Freddie, a computational annotation-independent isoform discovery and detection tool. Freddie takes as input transcriptomic LR sequencing of a sample alongside its genomic split alignment and computes a set of isoforms for the given sample. It then partitions the input reads into sets that can be processed independently and in parallel. For each partition, Freddie segments the genomic alignment of the reads into canonical exon segments. The goal of this segmentation is to be able to represent any potential isoform as a subset of these canonical exons. This segmentation is formulated as an optimization problem and is solved with a dynamic programming algorithm. Then, Freddie reconstructs the isoforms by jointly clustering and error-correcting the reads using the canonical segmentation as a succinct representation. The clustering and error-correcting step is formulated as an optimization problem-the Minimum Error Clustering into Isoforms (MErCi) problem-and is solved using integer linear programming (ILP). We compare the performance of Freddie on simulated datasets with other isoform detection tools with varying dependence on annotation databases. We show that Freddie outperforms the other tools in its accuracy, including those given the complete ground truth annotation. We also run Freddie on a transcriptomic LR dataset generated in-house from a prostate cancer cell line with a matched short-read RNA-seq dataset. Freddie results in isoforms with a higher short-read cross-validation rate than the other tested tools. Freddie is open source and available at https://github.com/vpc-ccg/freddie/.


Assuntos
Processamento Alternativo , Software , Transcriptoma , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA-Seq , Análise de Sequência de RNA/métodos
3.
Nucleic Acids Res ; 51(6): 2655-2670, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36727462

RESUMO

Overexpression of androgen receptor (AR) is the primary cause of castration-resistant prostate cancer, although mechanisms upregulating AR transcription in this context are not well understood. Our RNA-seq studies revealed that SMAD3 knockdown decreased levels of AR and AR target genes, whereas SMAD4 or SMAD2 knockdown had little or no effect. ChIP-seq analysis showed that SMAD3 knockdown decreased global binding of AR to chromatin. Mechanistically, we show that SMAD3 binds to intron 3 of the AR gene to promote AR expression. Targeting these binding sites by CRISPRi reduced transcript levels of AR and AR targets. In addition, ∼50% of AR and SMAD3 ChIP-seq peaks overlapped, and SMAD3 may also cooperate with or co-activate AR for AR target expression. Functionally, AR re-expression in SMAD3-knockdown cells partially rescued AR target expression and cell growth defects. The SMAD3 peak in AR intron 3 overlapped with H3K27ac ChIP-seq and ATAC-seq peaks in datasets of prostate cancer. AR and SMAD3 mRNAs were upregulated in datasets of metastatic prostate cancer and CRPC compared with primary prostate cancer. A SMAD3 PROTAC inhibitor reduced levels of AR, AR-V7 and AR targets in prostate cancer cells. This study suggests that SMAD3 could be targeted to inhibit AR in prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Proteína Smad3 , Humanos , Masculino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064078

RESUMO

Prostate-specific membrane antigen (PSMA) is highly overexpressed in most prostate cancers and is clinically visualized using PSMA-specific probes incorporating glutamate-ureido-lysine (GUL). PSMA is effectively absent from certain high-mortality, treatment-resistant subsets of prostate cancers, such as neuroendocrine prostate cancer (NEPC); however, GUL-based PSMA tracers are still reported to have the potential to identify NEPC metastatic tumors. These probes may bind unknown proteins associated with PSMA-suppressed cancers. We have identified the up-regulation of PSMA-like aminopeptidase NAALADaseL and the metabotropic glutamate receptors (mGluRs) in PSMA-suppressed prostate cancers and find that their expression levels inversely correlate with PSMA expression and are associated with GUL-based radiotracer uptake. Furthermore, we identify that NAALADaseL and mGluR expression correlates with a unique cell cycle signature. This provides an opportunity for the future study of the biology of NEPC and potential therapeutic directions. Computationally predicting that GUL-based probes bind well to these targets, we designed and synthesized a fluorescent PSMA tracer to investigate these proteins in vitro, where it shows excellent affinity for PSMA, NAALADaseL, and specific mGluRs associated with poor prognosis.


Assuntos
Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Glutamatos , Lisina , Sondas Moleculares , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Ureia , Animais , Antígenos de Superfície/química , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Imunofluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Expressão Gênica , Glutamato Carboxipeptidase II/química , Glutamatos/química , Humanos , Imuno-Histoquímica , Lisina/química , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Imagem Molecular/métodos , Sondas Moleculares/química , Neoplasias da Próstata/genética , Ligação Proteica , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
5.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753479

RESUMO

Cellular metabolism in cancer is significantly altered to support the uncontrolled tumor growth. How metabolic alterations contribute to hormonal therapy resistance and disease progression in prostate cancer (PCa) remains poorly understood. Here we report a glutaminase isoform switch mechanism that mediates the initial therapeutic effect but eventual failure of hormonal therapy of PCa. Androgen deprivation therapy inhibits the expression of kidney-type glutaminase (KGA), a splicing isoform of glutaminase 1 (GLS1) up-regulated by androgen receptor (AR), to achieve therapeutic effect by suppressing glutaminolysis. Eventually the tumor cells switch to the expression of glutaminase C (GAC), an androgen-independent GLS1 isoform with more potent enzymatic activity, under the androgen-deprived condition. This switch leads to increased glutamine utilization, hyperproliferation, and aggressive behavior of tumor cells. Pharmacological inhibition or RNA interference of GAC shows better treatment effect for castration-resistant PCa than for hormone-sensitive PCa in vitro and in vivo. In summary, we have identified a metabolic function of AR action in PCa and discovered that the GLS1 isoform switch is one of the key mechanisms in therapeutic resistance and disease progression.


Assuntos
Antagonistas de Androgênios/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Glutaminase/genética , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/uso terapêutico , Animais , Linhagem Celular Tumoral , Biologia Computacional , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Proc Natl Acad Sci U S A ; 116(29): 14573-14582, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31266892

RESUMO

Androgen receptor (AR) is a ligand-activated transcription factor and a key driver of prostate cancer (PCa) growth and progression. Understanding the factors influencing AR-mediated gene expression provides new opportunities for therapeutic intervention. Poly(ADP-ribose) Polymerase (PARP) is a family of enzymes, which posttranslationally modify a range of proteins and regulate many different cellular processes. PARP-1 and PARP-2 are two well-characterized PARP members, whose catalytic activity is induced by DNA-strand breaks and responsible for multiple DNA damage repair pathways. PARP inhibitors are promising therapeutic agents that show synthetic lethality against many types of cancer (including PCa) with homologous recombination (HR) DNA-repair deficiency. Here, we show that, beyond DNA damage repair function, PARP-2, but not PARP-1, is a critical component in AR transcriptional machinery through interacting with the pioneer factor FOXA1 and facilitating AR recruitment to genome-wide prostate-specific enhancer regions. Analyses of PARP-2 expression at both mRNA and protein levels show significantly higher expression of PARP-2 in primary PCa tumors than in benign prostate tissues, and even more so in castration-resistant prostate cancer (CRPC) tumors. Selective targeting of PARP-2 by genetic or pharmacological means blocks interaction between PARP-2 and FOXA1, which in turn attenuates AR-mediated gene expression and inhibits AR-positive PCa growth. Next-generation antiandrogens act through inhibiting androgen synthesis (abiraterone) or blocking ligand binding (enzalutamide). Selective targeting of PARP-2, however, may provide an alternative therapeutic approach for AR inhibition by disruption of FOXA1 function, which may be beneficial to patients, irrespective of their DNA-repair deficiency status.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Interferente Pequeno/metabolismo , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Proc Natl Acad Sci U S A ; 115(20): E4584-E4593, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712835

RESUMO

Formation of the androgen receptor splicing variant 7 (AR-V7) is one of the major mechanisms by which resistance of prostate cancer to androgen deprivation therapy occurs. The histone demethylase JMJD1A (Jumonji domain containing 1A) functions as a key coactivator for AR by epigenetic regulation of H3K9 methylation marks. Here, we describe a role for JMJD1A in AR-V7 expression. While JMJD1A knockdown had no effect on full-length AR (AR-FL), it reduced AR-V7 levels in prostate cancer cells. Reexpression of AR-V7 in the JMJD1A-knockdown cells elevated expression of select AR targets and partially rescued prostate cancer cell growth in vitro and in vivo. The AR-V7 protein level correlated positively with JMJD1A in a subset of human prostate cancer specimens. Mechanistically, we found that JMJD1A promoted alternative splicing of AR-V7 through heterogeneous nuclear ribonucleoprotein F (HNRNPF), a splicing factor known to regulate exon inclusion. Knockdown of JMJD1A or HNRNPF inhibited splicing of AR-V7, but not AR-FL, in a minigene reporter assay. JMJD1A was found to interact with and promote the recruitment of HNRNPF to a cryptic exon 3b on AR pre-mRNA for the generation of AR-V7. Taken together, the role of JMJD1A in AR-FL coactivation and AR-V7 alternative splicing highlights JMJD1A as a potentially promising target for prostate cancer therapy.


Assuntos
Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Animais , Proliferação de Células , Epigênese Genética , Éxons , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Histonas/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Mensageiro , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Prostate ; 80(9): 674-686, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32294305

RESUMO

BACKGROUND: Castrate-resistant prostate cancer (CRPC) is an aggressive and lethal disease. The pathogenesis of CRPC is not fully understood and novel therapeutic targets need to be identified to improve the patients' prognosis. MicroRNA-30a (miR-30a) has been demonstrated to be a tumor suppressor in many types of solid malignancies. However, its role in androgen-independent (AI) growth of prostate cancer (PCa) received limited attention as yet. METHODS: The clinical association of miR-30a and its potential targets with AI growth was characterized by bioinformatics analyses. Regulation of cell proliferation and colony formation rates by miR-30a were tested using PCa cell models. Xenograft models were used to measure the regulation of prostate tumor growth by miR-30a. The real-time quantitative polymerase chain reaction was used to validate whether miR-30a and its targets regulate cell cycle control genes and androgen receptor (AR)-dependent transcription. Bioinformatics tools, Western blot, and luciferase reporter assays were utilized to identify miR-30a targets. RESULTS: Bioinformatic analysis showed that low expression of miR-30a is associated with castration resistance of PCa patients and poor outcomes. Transfection of miR-30a mimics inhibited the AI growth of PCa cells in vitro and in vivo. Upregulation of miR-30a in 22RV1 cells altered the expression of cell cycle control genes and AR-mediated transcription, while downregulation of miR-30a in LNCaP cells had the opposite effects to AR-mediated transcription. MYBL2, FOXD1, and SOX4 were identified as miR-30a targets. Downregulation of MYBL2, FOXD1, and SOX4 affected the expression of cell cycle control genes and AR-mediated transcription and suppressed the AI growth of 22RV1 cells. CONCLUSIONS: Our results suggest that miR-30a inhibits AI growth of PCa by targeting MYBL2, FOXD1, and SOX4. They provide novel insights into developing new treatment strategies for CRPC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Fatores de Transcrição SOXC/metabolismo , Transativadores/metabolismo , Antagonistas de Androgênios/metabolismo , Androgênios/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Células HEK293 , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Prognóstico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo , Fatores de Transcrição SOXC/genética , Transativadores/genética , Regulação para Cima
9.
J Chem Inf Model ; 60(8): 3703-3721, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32687346

RESUMO

Topoisomerase II (TopoII) is an enzyme essential for cellular metabolism and replication as it regulates DNA topology. Since inhibition of TopoII induces cell death, it is a well-established drug target in cancer therapy; several broadly used anticancer drugs including etoposide and doxorubicin are TopoII inhibitors. However, these therapeutics tend to cause severe side effects and suffer from relatively low ligand affinity, leaving TopoII targeting with small molecules an active area of research. In recent years computer-aided drug discovery (CADD) approaches have been actively used to expand knowledge on the role of TopoII in cancer and to develop novel strategies for its inhibition. Herein, we overview studies that employed structure-based approaches such as docking and molecular dynamic simulations, as well as ligand-based approaches, such as QSAR (quantitative structure-activity relationship) modeling among others, to gain understanding in TopoII targeting with existing drugs and to search for novel drug candidates.


Assuntos
Descoberta de Drogas , Inibidores da Topoisomerase II , Desenho Assistido por Computador , Computadores , DNA Topoisomerases Tipo II , Desenho de Fármacos , Etoposídeo , Inibidores da Topoisomerase II/farmacologia
10.
Cancer Sci ; 110(1): 245-255, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30417466

RESUMO

Potent androgen receptor pathway inhibition (ARPI) therapies have given rise to a lethal, aggressive subtype of castration-resistant prostate cancer (CRPC) called treatment-induced neuroendocrine prostate cancer (t-NEPC). Now, t-NEPC poses a major clinical problem as approximately 20% of CRPC cases bear this subtype-a rate of occurrence that is predicted to rise with the widespread use of ARPI therapies. Unfortunately, there are no targeted therapies currently available to treat t-NEPC as the origin and molecular underpinnings of t-NEPC development remain unclear. In the present study, we identify that RNA splicing of the G protein-coupled receptor kinase-interacting protein 1 (GIT1) gene is a unique event in t-NEPC patients. Specifically, upregulation of the GIT1-A splice variant and downregulation of the GIT1-C variant expressions are associated with t-NEPC patient tumors, patient-derived xenografts, and cell models. RNA-binding assays show that RNA splicing of GIT1 is directly driven by SRRM4 and is associated with the neuroendocrine phenotype in CRPC cohorts. We show that GIT1-A and GIT1-C regulate differential transcriptomes in prostate cancer cells, where GIT1-A regulates genes associated with morphogenesis, neural function, environmental sensing via cell-adhesion processes, and epigenetic regulation. Consistent with our transcriptomic analyses, we report opposing functions of GIT1-A and GIT1-C in the stability of focal adhesions, whereby GIT1-A promotes focal adhesion stability. In summary, our study is the first to report that alternative RNA splicing of the GIT1 gene is associated with t-NEPC and reprograms its function involving FA-mediated signaling and cell processes, which may contribute to t-NEPC development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Processamento Alternativo , Carcinoma Neuroendócrino/genética , Proteínas de Ciclo Celular/genética , Predisposição Genética para Doença/genética , Neoplasias da Próstata/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Adesões Focais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células PC-3 , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
11.
Prostate ; 79(1): 96-104, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155992

RESUMO

Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of castrate-resistant prostate cancer characterized by poor patient outcome. Whole transcriptome sequencing analyses identified a NEPC-specific RNA splicing program that is predominantly controlled by the SRRM4 gene, suggesting that SRRM4 drives NEPC development. However, whether SRRM4 expression in patients may aid pathologists in diagnosing NEPC and predicting patient survival remains to be determined. In this study, we have applied RNA in situ hybridization and immunohistochemistry assays to measure the expressions of SRRM4, NEPC markers (SYP, CD56, and CHGA), and adenocarcinoma (AdPC) markers (AR, PSA) in a series of tissue microarrays constructed from castrate-resistant prostate tumors, treatment-naïve tumors collected from radical prostatectomy, and tumors treated with neoadjuvant hormonal therapy (NHT) for 0-12 months. Three pathologists also independently evaluated tumor histology and NEPC marker status. Here, we report that SRRM4 in castrate-resistant tumors is highly expressed in NEPC, strongly correlated with SYP, CD56, and CHGA expressions (Pearson correlation r = 0.883, 0.675, and 0.881; P < 0.0001) and negatively correlated with AR and PSA expressions (Pearson correlation r = -0.544 and -0.310; P < 0.05). Overall survival is 12.3 months for patients with SRRM4 positive tumors, comparing to 23 months for patients with SRRM4 negative tumors. In treatment-naïve AdPC, low SRRM4 expression is detected in ∼16% tumor cores. It correlates with SYP and CHGA expressions, but not Gleason scores. AdPC treated with >7 month NHT has significantly higher SRRM4 expression. Based on these findings, we conclude that SRRM4 expression in castrate-resistant tumors is highly correlated with NEPC and poor patient survival. It may serve as a diagnosis and prognosis biomarker of NEPC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso/biossíntese , Células Neuroendócrinas/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , Células Neuroendócrinas/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
BJU Int ; 122(4): 560-570, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29569310

RESUMO

Prostate cancer (PCa) is the most common form of cancer in men in the developed world and the second leading cause of cancer-related deaths. While advanced PCa is initially controlled with hormonal therapies targeting the androgen receptor (AR) pathway, recurrence occurs because of the emergence of lethal castration-resistant PCa (CRPC). Despite newer AR pathway inhibitors that prolong survival, resistance still emerges, most often with rising PSA levels indicative of AR-driven activity, but increasingly as non-AR-driven cancer. Treatment resistance mechanisms include AR-signalling pathway alterations, AR-signalling bypass mechanisms, and AR-independent clonal evolution. The latter mechanism can lead to the emergence of neuroendocrine prostate cancer (NEPC), an aggressive lethal subtype of PCa. The incidence of treatment-induced NEPC is rising because of the widespread use of more potent AR pathway inhibitors. This comprehensive review of major NEPC drivers and facilitators defines three coordinated processes contributing to NEPC progression. Specifically, castration-resistant adenocarcinoma cells gain lineage plasticity under selective pressures of potent AR suppression to transform into AR-independent tumour cells. In concert, neuroendocrine (NE)-specific transdifferentiation factors induce NE lineage of these PCa cells, which, with support of increased proliferation factors, contributes to clonal expansion and tumour repopulation into NEPC. We examine the roles of each of the major NEPC contributors during the disease progression and identify potential therapeutic opportunities for targeted therapies.


Assuntos
Adenocarcinoma/genética , Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Próstata Resistentes à Castração/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Antagonistas de Receptores de Andrógenos/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Carcinoma Neuroendócrino , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Humanos , Masculino , Modelos Moleculares , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo
13.
J Cell Physiol ; 232(4): 852-861, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27430900

RESUMO

The non-POU-domain-containing octamer binding protein (NONO; also known as p54nrb) has various nuclear functions ranging from transcription, RNA splicing, DNA synthesis and repair. Although tyrosine phosphorylation has been proposed to account for the multi-functional properties of p54nrb, direct evidence on p54nrb as a phosphotyrosine protein remains unclear. To investigate the tyrosine phosphorylation status of p54nrb, we performed site-directed mutagenesis on the five tyrosine residues of p54nrb, replacing the tyrosine residues with phenylalanine or alanine, and immunoblotted for tyrosine phosphorylation. We then preceded with luciferase reporter assays, RNA splicing minigene assays, co-immunoprecipitation, and confocal microscopy to study the function of p54nrb tyrosine residues on transcription, RNA splicing, protein-protein interaction, and cellular localization. We found that p54nrb was not phosphorylated at tyrosine residues. Rather, it has non-specific binding affinity to anti-phosphotyrosine antibodies. However, replacement of tyrosine with phenylalanine altered p54nrb activities in transcription co-repression and RNA splicing in gene context-dependent fashions by means of differential regulation of p54nrb protein association with its interacting partners and co-regulators of transcription and splicing. These results demonstrate that tyrosine residues, regardless of phosphorylation status, are important for p54nrb function. J. Cell. Physiol. 232: 852-861, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Tirosina/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Fosfotirosina/metabolismo , Ligação Proteica , Splicing de RNA/genética , Receptores Androgênicos/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica
14.
Int J Cancer ; 136(4): E27-38, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25138562

RESUMO

The glucocorticoid and androgen receptors (GR and AR) can commonly regulate up to 50% of their target genes in prostate cancer (PCa) cells. GR expression is stimulated by castration therapy, which has been proposed to be one mechanism that compensates for AR signaling blockade and promotes castration-resistant PCa (CRPC) progression. However, whether GR functions as a driver for CRPC or a marker reflecting AR activity remains unclear. Here, we applied PCa tissue microarrays to show that GR protein levels were elevated by castration therapy, but reduced to pre-castration levels when tumors were at the CRPC stage. Using subrenal capsule xenograft models, we showed that GR expression was inversely correlated with AR and PSA expressions. GR expression levels are not associated with tumor invasion and metastasis phenotypes. In castration-resistant C4-2 xenografts expressing AR shRNA, regressing tumors induced by AR knockdown expressed higher levels of GR and lower levels of PSA than non-regressing tumors. Immunoblotting and real-time PCR assays further showed that AR knockdown or AR antagonists increased GR expression at both mRNA and protein levels. ChIP combined with DNA sequencing techniques identified a negative androgen responsive element (nARE) 160K base pairs upstream of the GR gene. Gel shift assays confirmed that AR directly interacted with the nARE and luciferase assays demonstrated that the nARE could mediate transcription repression by ligand-activated AR. In conclusion, GR expression is negatively regulated by AR signaling and may serve as a marker for AR signaling in prostate tumors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/fisiologia , Receptores de Glucocorticoides/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/fisiologia , Animais , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Inativação Gênica , Humanos , Masculino , Camundongos Nus , Camundongos SCID , Terapia Neoadjuvante , Transplante de Neoplasias , Neoplasias da Próstata/tratamento farmacológico , Receptores de Glucocorticoides/genética , Elementos de Resposta , Transdução de Sinais , Análise Serial de Tecidos
15.
Prostate ; 75(10): 1043-50, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25833156

RESUMO

BACKGROUND: The progesterone receptor, like the androgen receptor, belongs to the steroid receptor superfamily. Our previous studies have reported that the PR is expressed specifically in prostate stroma. PR inhibits proliferation of, and regulates cytokine secretion by stromal cells. However, PR protein expression in cancer-associated stroma during prostate cancer progression has not been profiled. Since the phenotypes of prostate stromal cells change dynamically as tumors progress, whether the PR plays a role in regulating stromal cell differentiation needs to be investigated. METHODS: Immunohistochemistry assays measured PR protein levels on human prostate tissue microarrays containing 367 tissue cores from benign prostate, prostate tumors with different Gleason scores, tumors under various durations of castration therapy, and tumors at the castration-resistant stage. Immunoblotting assays determined whether PR regulated the expression of alpha smooth muscle actin (α-SMA), vimentin, and fibroblast specific protein (FSP) in human prostate stromal cells. RESULTS: PR protein levels decreased in cancer-associated stroma when compared with that in benign prostate stroma. This reduction in PR expression was not correlated with Gleason scores. PR protein levels were elevated by castration therapy, but reduced to pre-castration levels when tumors progressed to the castration-resistant stage. Enhanced PR expression in human prostate stromal cells increased α-SMA, but decreased vimentin and FSP protein levels ligand-independently. CONCLUSION: These results suggest that PR plays an active role in regulating stromal cell phenotypes during prostate cancer progression.


Assuntos
Diferenciação Celular/fisiologia , Neoplasias da Próstata/patologia , Receptores de Progesterona/metabolismo , Células Estromais/patologia , Actinas/análise , Adulto , Idoso , Proteínas de Ligação ao Cálcio/análise , Humanos , Masculino , Pessoa de Meia-Idade , Orquiectomia , Próstata/química , Neoplasias da Próstata/química , Vimentina/análise
16.
Oncogene ; 43(21): 1631-1643, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589675

RESUMO

Androgen deprivation therapy (ADT) is the first line of treatment for metastatic prostate cancer (PCa) that effectively delays the tumor progression. However, it also increases the risk of venous thrombosis event (VTE) in patients, a leading cause of mortality. How a pro-thrombotic cascade is induced by ADT remains poorly understood. Here, we report that protein disulfide isomerase A2 (PDIA2) is upregulated in PCa cells to promote VTE formation and enhance PCa cells resistant to ADT. Using various in vitro and in vivo models, we demonstrated a dual function of PDIA2 that enhances tumor-mediated pro-coagulation activity via tumor-derived extracellular vehicles (EVs). It also stimulates PCa cell proliferation, colony formation, and xenograft growth androgen-independently. Mechanistically, PDIA2 activates the tissue factor (TF) on EVs through its isomerase activity, which subsequently triggers a pro-thrombotic cascade in the blood. Additionally, TF-containing EVs can activate the Src kinase inside PCa cells to enhance the AR signaling ligand independently. Androgen deprivation does not alter PDIA2 expression in PCa cells but enhances PDIA2 translocation to the cell membrane and EVs via suppressing the clathrin-dependent endocytic process. Co-recruitment of AR and FOXA1 to the PDIA2 promoter is required for PDIA2 transcription under androgen-deprived conditions. Importantly, blocking PDIA2 isomerase activity suppresses the pro-coagulation activity of patient plasma, PCa cell, and xenograft samples as well as castrate-resistant PCa xenograft growth. These results demonstrate that PDIA2 promotes VTE and tumor progression via activating TF from tumor-derived EVs. They rationalize pharmacological inhibition of PDIA2 to suppress ADT-induced VTE and castrate-resistant tumor progression.


Assuntos
Progressão da Doença , Neoplasias de Próstata Resistentes à Castração , Isomerases de Dissulfetos de Proteínas , Trombose Venosa , Animais , Humanos , Masculino , Camundongos , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/efeitos adversos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Tromboplastina/metabolismo , Tromboplastina/genética , Trombose Venosa/metabolismo , Trombose Venosa/induzido quimicamente , Trombose Venosa/patologia , Trombose Venosa/genética , Trombose Venosa/etiologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Natl Cancer Inst ; 116(3): 421-433, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37847647

RESUMO

BACKGROUND: Although the fusion of the transmembrane serine protease 2 gene (TMPRSS2) with the erythroblast transformation-specific-related gene (ERG), or TMPRSS2-ERG, occurs frequently in prostate cancer, its impact on clinical outcomes remains controversial. Roughly half of TMPRSS2-ERG fusions occur through intrachromosomal deletion of interstitial genes and the remainder via insertional chromosomal rearrangements. Because prostate cancers with deletion-derived TMPRSS2-ERG fusions are more aggressive than those with insertional fusions, we investigated the impact of interstitial gene loss on prostate cancer progression. METHODS: We conducted an unbiased analysis of transcriptome data from large collections of prostate cancer samples and employed diverse in vitro and in vivo models combined with genetic approaches to characterize the interstitial gene loss that imposes the most important impact on clinical outcome. RESULTS: This analysis identified FAM3B as the top-ranked interstitial gene whose loss is associated with a poor prognosis. The association between FAM3B loss and poor clinical outcome extended to fusion-negative prostate cancers where FAM3B downregulation occurred through epigenetic imprinting. Importantly, FAM3B loss drives disease progression in prostate cancer. FAM3B acts as an intermediator of a self-governing androgen receptor feedback loop. Specifically, androgen receptor upregulates FAM3B expression by binding to an intronic enhancer to induce an enhancer RNA and facilitate enhancer-promoter looping. FAM3B, in turn, attenuates androgen receptor signaling. CONCLUSION: Loss of FAM3B in prostate cancer, whether through the TMPRSS2-ERG translocation or epigenetic imprinting, causes an exit from this autoregulatory loop to unleash androgen receptor activity and prostate cancer progression. These findings establish FAM3B loss as a new driver of prostate cancer progression and support the utility of FAM3B loss as a biomarker to better define aggressive prostate cancer.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Retroalimentação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transcriptoma , Proteínas de Fusão Oncogênica/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Proteínas de Neoplasias/genética , Citocinas/genética
18.
Epigenomics ; 16(17): 1129-1132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39225130

RESUMO

Neuroendocrine prostate cancer (NEPC) is a rare and aggressive subtype of prostate cancer (PCa), emerging from advanced treatments and characterized by loss of androgen receptor (AR) signaling and neuroendocrine features, leading to rapid progression and treatment resistance. The third symposium on treatment-induced NEPC, held from 21 to 23 June 2024, at Harrison Hot Springs Resort, BC, Canada, united leading global researchers and clinicians. Sponsored by the Vancouver Prostate Centre (VPC), Canadian Institute of Health Research, Prostate Cancer Foundation Canada and Pharma Planter Inc, the event focused on the latest NEPC research and innovative treatment strategies. Co-chaired by Drs. Yuzhuo Wang and Martin Gleave, the symposium featured sessions on NEPC's historical context, molecular pathways, epigenetic regulation and the role of the tumor microenvironment and metabolism in its progression. Keynotes from experts like Dr. Himisha Beltran and Dr. Martin Gleave highlighted the complexity of NEPC. The Emerging Talent session showcased new research, pointing to the future of NEPC treatment. The symposium concluded with a consensus on the need for early detection, targeted therapies and personalized medicine to effectively combat NEPC, emphasizing the importance of global collaboration in advancing NEPC understanding and treatment.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/terapia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/terapia , Carcinoma Neuroendócrino/patologia , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Microambiente Tumoral , Epigênese Genética , Tumores Neuroendócrinos/terapia , Tumores Neuroendócrinos/genética
19.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678591

RESUMO

DNA topoisomerase II (Top2) is essential for all eukaryotic cells in the regulation of DNA topology through the generation of temporary double-strand breaks. Cancer cells acquire enhanced Top2 functions to cope with the stress generated by transcription and DNA replication during rapid cell division since cancer driver genes such as Myc and EZH2 hijack Top2 in order to realize their oncogenic transcriptomes for cell growth and tumor progression. Inhibitors of Top2 are therefore designed to target Top2 to trap it on DNA, subsequently causing protein-linked DNA breaks, a halt to the cell cycle, and ultimately cell death. Despite the effectiveness of these inhibitors, cancer cells can develop resistance to them, thereby limiting their therapeutic utility. To maximize the therapeutic potential of Top2 inhibitors, combination therapies to co-target Top2 with DNA damage repair (DDR) machinery and oncogenic pathways have been proposed to induce synthetic lethality for more thorough tumor suppression. In this review, we will discuss the mode of action of Top2 inhibitors and their potential applications in cancer treatments.

20.
Oncogene ; 42(8): 559-571, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36544044

RESUMO

The incidence of treatment-induced neuroendocrine prostate cancer (t-NEPC) has been greatly increasing after the usage of secondgeneration androgen receptor (AR) pathway inhibitors (ARPIs). Neuroendocrine differentiation (NED) is closely associated with ARPI treatment failure and poor prognosis in prostate cancer (PCa) patients. However, the molecular mechanisms of NED are not fully understood. Here we report that upregulation of TRIM59, a TRIM family protein, is strongly correlated with ARPI treatment mediated NED and shorter patient survival in PCas. AR binds to TRIM59 promoter and represses its transcription. ARPI treatment leads to a reversal of repressive epigenetic modifications on TRIM59 gene and the transcriptional restraint on TRIM59 by AR. Upregulated TRIM59 then drives the NED of PCa by enhancing the degradation of RB1 and P53 and upregulating downstream lineage plasticity-promoting transcription factor SOX2. Altogether, TRIM59 is negatively regulated by AR and acts as a key driver for NED in PCas. Our study provides a novel prognostic marker for PCas and shed new light on the molecular pathogenesis of t-NEPC, a deadly variant of PCa.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Proteínas com Motivo Tripartido , Humanos , Masculino , Antagonistas de Receptores de Andrógenos , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA