Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Immunol ; 25(4): 633-643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486021

RESUMO

Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , SARS-CoV-2 , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Anticorpos , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
EMBO J ; 42(10): e112234, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36970857

RESUMO

The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop. These residues recruit Phosphatidylinositol 3,4,5-trisphosphate (PIP3) that we show here to be required for endosomal IFITM activity. We identify PIP3 as an interferon-inducible phospholipid that acts as a rheostat for endosomal antiviral immunity. PIP3 levels correlated with the potency of endosomal IFITM restriction and exogenous PIP3 enhanced inhibition of endocytic viruses, including the recent SARS-CoV2 Omicron variant. Together, our results identify PIP3 as a critical regulator of endosomal IFITM restriction linking it to the Pi3K/Akt/mTORC pathway and elucidate cell-compartment-specific antiviral mechanisms with potential relevance for the development of broadly acting antiviral strategies.


Assuntos
Antivirais , COVID-19 , Humanos , Interferons/metabolismo , Fosfolipídeos , Fosfatidilinositol 3-Quinases/metabolismo , RNA Viral , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/metabolismo , Internalização do Vírus , Proteínas de Membrana/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(20): e2120976119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35549549

RESUMO

As the coronavirus disease 2019 (COVID-19) pandemic continues, there is a strong need for highly potent monoclonal antibodies (mAbs) that are resistant against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs). Here, we evaluate the potency of the previously described mAb J08 against these variants using cell-based assays and delve into the molecular details of the binding interaction using cryoelectron microscopy (cryo-EM) and X-ray crystallography. We show that mAb J08 has low nanomolar affinity against most VoCs and binds high on the receptor binding domain (RBD) ridge, away from many VoC mutations. These findings further validate the phase II/III human clinical trial underway using mAb J08 as a monoclonal therapy.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , SARS-CoV-2 , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Afinidade de Anticorpos , COVID-19/terapia , Humanos , Testes de Neutralização , SARS-CoV-2/imunologia
4.
Clin Immunol ; 261: 110164, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38417765

RESUMO

Multiple vaccines have been approved to control COVID-19 pandemic, with Pfizer/BioNTech (BNT162b2) being widely used. We conducted a longitudinal analysis of the immune response elicited after three doses of the BNT162b2 vaccine in individuals who have previously experienced SARS-CoV-2 infection and in unexperienced ones. We conducted immunological analyses and single-cell transcriptomics of circulating T and B lymphocytes, combined to CITE-seq or LIBRA-seq, and VDJ-seq. We found that antibody levels against SARS-CoV-2 Spike, NTD and RBD from wild-type, delta and omicron VoCs show comparable dynamics in both vaccination groups, with a peak after the second dose, a decline after six months and a restoration after the booster dose. The antibody neutralization activity was maintained, with lower titers against the omicron variant. Spike-specific memory B cell response was sustained over the vaccination schedule. Clonal analysis revealed that Spike-specific B cells were polyclonal, with a partial clone conservation from natural infection to vaccination. Spike-specific T cell responses were oriented towards effector and effector memory phenotypes, with similar trends in unexperienced and experienced individuals. The CD8 T cell compartment showed a higher clonal expansion and persistence than CD4 T cells. The first two vaccinations doses tended to induce new clones rather than promoting expansion of pre-existing clones. However, we identified a fraction of Spike-specific CD8 T cell clones persisting from natural infection that were boosted by vaccination and clones specifically induced by vaccination. Collectively, our observations revealed a moderate effect of the second dose in enhancing the immune responses elicited after the first vaccination. Differently, we found that a third dose was necessary to restore comparable levels of neutralizing antibodies and Spike-specific T and B cell responses in individuals who experienced a natural SARS-CoV-2 infection.


Assuntos
COVID-19 , Vacinas , Humanos , COVID-19/prevenção & controle , Vacina BNT162 , SARS-CoV-2 , Pandemias , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
5.
Mol Ther ; 30(1): 311-326, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34547465

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)-induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunização/métodos , Modelos Animais , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/genética , COVID-19/virologia , Feminino , Furões , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Domínios Proteicos , Ratos Sprague-Dawley
6.
Pharmacol Res ; 175: 105982, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798263

RESUMO

All the different coronavirus SARS-CoV-2 variants isolated so far share the same mechanism of infection mediated by the interaction of their spike (S) glycoprotein with specific residues on their cellular receptor: the angiotensin converting enzyme 2 (ACE2). Therefore, the steric hindrance on this cellular receptor created by a bulk macromolecule may represent an effective strategy for the prevention of the viral spreading and the onset of severe forms of Corona Virus disease 19 (COVID-19). Here, we applied a systematic evolution of ligands by exponential enrichment (SELEX) procedure to identify two single strand DNA molecules (aptamers) binding specifically to the region surrounding the K353, the key residue in human ACE2 interacting with the N501 amino acid of the SARS-CoV-2 S. 3D docking in silico experiments and biochemical assays demonstrated that these aptamers bind to this region, efficiently prevent the SARS-CoV-2 S/human ACE2 interaction and the viral infection in the nanomolar range, regardless of the viral variant, thus suggesting the possible clinical development of these aptamers as SARS-CoV-2 infection inhibitors. Our approach brings a significant innovation to the therapeutic paradigm of the SARS-CoV-2 pandemic by protecting the target cell instead of focusing on the virus; this is particularly attractive in light of the increasing number of viral mutants that may potentially escape the currently developed immune-mediated neutralization strategies.


Assuntos
Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Aptâmeros de Nucleotídeos/farmacologia , Tratamento Farmacológico da COVID-19 , Receptores Virais/antagonistas & inibidores , SARS-CoV-2/patogenicidade , Internalização do Vírus/efeitos dos fármacos , Células A549 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , COVID-19/enzimologia , COVID-19/genética , COVID-19/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Mutação , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/genética , Técnica de Seleção de Aptâmeros
7.
Bioorg Med Chem Lett ; 73: 128904, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868496

RESUMO

Chronic hepatitis B (CHB) is a major worldwide public health problem and novel anti-HBV therapies preventing liver disease progression to cirrhosis and hepatocellular carcinoma are urgently needed. Over the last several years, capsid assembly modulators (CAM) have emerged as clinically effective anti-HBV agents which can inhibit HBV replication in CHB patients. As part of a drug discovery program aimed at obtaining novel CAM endowed with high in vitro and in vivo antiviral activity, we identified a novel series of sulfamoylbenzamide (SBA) derivatives. Compound 10, one of the most in vitro potent SBA-derived CAM discovered to date, showed excellent pharmacokinetics in mice suitable for oral dosing. When studied in a transgenic mouse model of hepatic HBV replication, it was considerably more potent than NVR 3-778, the first sulfamoylbenzamide (SBA) CAM that entered clinical trials for CHB, at reducing viral replication in a dose-dependent fashion. We present herein the discovery process, the SAR analysis and the pre-clinical profile of this novel SBA CAM.


Assuntos
Antivirais , Capsídeo , Animais , Antivirais/farmacocinética , Proteínas do Capsídeo , Vírus da Hepatite B , Camundongos , Montagem de Vírus , Replicação Viral
9.
PLoS Pathog ; 8(3): e1002576, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412376

RESUMO

4-anilino quinazolines have been identified as inhibitors of HCV replication. The target of this class of compounds was proposed to be the viral protein NS5A, although unequivocal proof has never been presented. A 4-anilino quinazoline moiety is often found in kinase inhibitors, leading us to formulate the hypothesis that the anti-HCV activity displayed by these compounds might be due to inhibition of a cellular kinase. Type III phosphatidylinositol 4-kinase α (PI4KIIIα) has recently been identified as a host factor for HCV replication. We therefore evaluated AL-9, a compound prototypical of the 4-anilino quinazoline class, on selected phosphatidylinositol kinases. AL-9 inhibited purified PI4KIIIα and, to a lesser extent, PI4KIIIß. In Huh7.5 cells, PI4KIIIα is responsible for the phosphatidylinositol-4 phosphate (PI4P) pool present in the plasma membrane. Accordingly, we observed a gradual decrease of PI4P in the plasma membrane upon incubation with AL-9, indicating that this agent inhibits PI4KIIIα also in living cells. Conversely, AL-9 did not affect the level of PI4P in the Golgi membrane, suggesting that the PI4KIIIß isoform was not significantly inhibited under our experimental conditions. Incubation of cells expressing HCV proteins with AL-9 induced abnormally large clusters of NS5A, a phenomenon previously observed upon silencing PI4KIIIα by RNA interference. In light of our findings, we propose that the antiviral effect of 4-anilino quinazoline compounds is mediated by the inhibition of PI4KIIIα and the consequent depletion of PI4P required for the HCV membranous web. In addition, we noted that HCV has a profound effect on cellular PI4P distribution, causing significant enrichment of PI4P in the HCV-membranous web and a concomitant depletion of PI4P in the plasma membrane. This observation implies that HCV--by recruiting PI4KIIIα in the RNA replication complex--hijacks PI4P metabolism, ultimately resulting in a markedly altered subcellular distribution of the PI4KIIIα product.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/metabolismo , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , 1-Fosfatidilinositol 4-Quinase/química , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Hepacivirus/patogenicidade , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Quinazolinas/farmacologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
10.
Antibodies (Basel) ; 13(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38247569

RESUMO

The COVID-19 pandemic, once a global crisis, is now largely under control, a testament to the extraordinary global efforts involving vaccination and public health measures. However, the relentless evolution of SARS-CoV-2, leading to the emergence of new variants, continues to underscore the importance of remaining vigilant and adaptable. Monoclonal antibodies (mAbs) have stood out as a powerful and immediate therapeutic response to COVID-19. Despite the success of mAbs, the evolution of SARS-CoV-2 continues to pose challenges and the available antibodies are no longer effective. New variants require the ongoing development of effective antibodies. In the present study, we describe the generation and characterization of neutralizing mAbs against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein by combining plasmid DNA and recombinant protein vaccination. By integrating genetic immunization for rapid antibody production and the potent immune stimulation enabled by protein vaccination, we produced a rich pool of antibodies, each with unique binding and neutralizing specificities, tested with the ELISA, BLI and FACS assays and the pseudovirus assay, respectively. Here, we present a panel of mAbs effective against the SARS-CoV-2 variants up to Omicron BA.1 and BA.5, with the flexibility to target emerging variants. This approach ensures the preparedness principle is in place to address SARS-CoV-2 actual and future infections.

11.
EBioMedicine ; 87: 104390, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36584595

RESUMO

BACKGROUND: The COVID-19 pandemic is an infectious disease caused by SARS-CoV-2. The first step of SARS-CoV-2 infection is the recognition of angiotensin-converting enzyme 2 (ACE2) receptors by the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein. Although the molecular and structural bases of the SARS-CoV-2-RBD/hACE2 interaction have been thoroughly investigated in vitro, the relationship between hACE2 expression and in vivo infection is less understood. METHODS: Here, we developed an efficient SARS-CoV-2-RBD binding assay suitable for super resolution microscopy and simultaneous hACE2 immunodetection and mapped the correlation between hACE2 receptor abundance and SARS-CoV-2-RBD binding, both in vitro and in human lung biopsies. Next, we explored the specific proteome of SARS-CoV-2-RBD/hACE2 through a comparative mass spectrometry approach. FINDINGS: We found that only a minority of hACE2 positive spots are actually SARS-CoV-2-RBD binding sites, and that the relationship between SARS-CoV-2-RBD binding and hACE2 presence is variable, suggesting the existence of additional factors. Indeed, we found several interactors that are involved in receptor localization and viral entry and characterized one of them: SLC1A5, an amino acid transporter. High-resolution receptor-binding studies showed that co-expression of membrane-bound SLC1A5 with hACE2 predicted SARS-CoV-2 binding and entry better than hACE2 expression alone. SLC1A5 depletion reduces SARS-CoV-2 binding and entry. Notably, the Omicron variant is more efficient in binding hACE2 sites, but equally sensitive to SLC1A5 downregulation. INTERPRETATION: We propose a method for mapping functional SARS-CoV-2 receptors in vivo. We confirm the existence of hACE2 co-factors that may contribute to differential sensitivity of cells to infection. FUNDING: This work was supported by an unrestricted grant from "Fondazione Romeo ed Enrica Invernizzi" to Stefano Biffo and by AIRC under MFAG 2021 - ID. 26178 project - P.I. Manfrini Nicola.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Internalização do Vírus , Pandemias , Receptores Virais/química , Receptores Virais/metabolismo , Ligação Proteica , Pulmão/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo
12.
EMBO Mol Med ; 15(5): e17580, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36946379

RESUMO

Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir-an orally available inhibitor of the 3-chymotrypsin-like cysteine protease-has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using mouse models of SARS-CoV-2 infection, we show that nirmatrelvir administration blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals.


Assuntos
Imunidade Adaptativa , Antivirais , Tratamento Farmacológico da COVID-19 , Lactamas , Animais , Camundongos , COVID-19/imunologia , SARS-CoV-2 , Antivirais/administração & dosagem , Imunidade Adaptativa/efeitos dos fármacos , Lactamas/administração & dosagem , Células T de Memória/imunologia , Linfócitos B/imunologia , Camundongos Endogâmicos C57BL
13.
Nat Commun ; 14(1): 53, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599850

RESUMO

The continuous evolution of SARS-CoV-2 generated highly mutated variants able to escape natural and vaccine-induced primary immunity. The administration of a third mRNA vaccine dose induces a secondary response with increased protection. Here we investigate the longitudinal evolution of the neutralizing antibody response in four donors after three mRNA doses at single-cell level. We sorted 4100 spike protein specific memory B cells identifying 350 neutralizing antibodies. The third dose increases the antibody neutralization potency and breadth against all SARS-CoV-2 variants as observed with hybrid immunity. However, the B cell repertoire generating this response is different. The increases of neutralizing antibody responses is largely due to the expansion of B cell germlines poorly represented after two doses, and the reduction of germlines predominant after primary immunization. Our data show that different immunization regimens induce specific molecular signatures which should be considered while designing new vaccines and immunization strategies.


Assuntos
Formação de Anticorpos , Linfócitos B , Vacinas contra COVID-19 , COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas contra COVID-19/imunologia , Linfócitos B/imunologia
14.
iScience ; 25(5): 104239, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35434540

RESUMO

Developing strategies against the SARS-CoV-2 is currently a main research subject. SARS-CoV-2 infects host cells by binding to human ACE2 receptors. Both, virus and ACE2, are highly glycosylated, and exploiting glycans of the SARS-CoV-2 envelope as binding sites for ACE2 represents a virus strategy for attacking the human host. We report here that a family of mannose-binding synthetic carbohydrate-binding agents (CBAs) inhibits SARS-CoV-2 infection, showing broad neutralizing activity vs. several variants of the spike protein. Preliminary tests indicated that the investigated CBAs interact with the spike protein rather than with ACE2. For a lead compound (IDS060), which has been selected among others for its lack of cytotoxicity, evidence of binding to the RBD of the spike protein has been found by NMR experiments, while competitive binding assays in the presence of IDS060 showed inhibition of binding of RBD to hACE2, although neutralizing activity was also observed with variants showing reduced or depleted binding.

15.
Lancet Reg Health Eur ; 13: 100287, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34961855

RESUMO

BACKGROUND: Vaccines against COVID-19 are a powerful tool to control the current SARS-CoV-2 pandemic. A thorough description of their immunogenicity among people living with HIV (PLWHIV) is necessary. We aimed to assess the immunogenicity of the mRNA-1273 vaccine among PLWHIV. METHODS: In this prospective cohort, adult PLWHIV outpatients were enrolled during the Italian vaccination campaign. Enrolment was allowed irrespective of ongoing combination antiretroviral therapy (ART), plasma HIV viral load and CD4+ T cell count. A two-dose regimen of mRNA-1273, with administrations performed 28 days apart, was employed. The primary outcomes were anti-spike (anti-S) antibody titres and neutralising antibody activity, assessed 28 days after completing the vaccination schedule. A convenient sample of individuals not affected by HIV was also collected to serve as control (referred as healthy-donors, HDs). FINDINGS: We enrolled 71 PLWHIV, mostly male (84·5%), with a mean age of 47 years, a median CD4+ T cell count of 747·0 cells per µL and a median HIV viral load <50 copies/mL. COVID-19-experienced PLWHIV displayed higher anti-S antibody titres (p=0·0007) and neutralising antibody activity in sera (p=0·0007) than COVID-19-naïve PLWHIV. When stratified according to CD4+ T cell count (<350 cells/µL, 350-500 cells/µL, >500 cells/µL), anti-S antibody titres (6/71, median 2173 U/mL [IQR 987-4109]; 7/71, 5763 IU/mL [IQR 4801->12500]; 58/71, 2449 U/mL [IQR 1524-5704]) were not lower to those observed among HDs (10, median 1425 U/mL [IQR 599-6131]). In addition, neutralising antibody activity, stratified according to the CD4+ T cell count (6/71, median 1314 [IQR 606-2477]; 7/71, 3329 IU/mL [IQR 1905-10508]; 58/71, 1227 U/mL [IQR 761-3032]), was like those displayed by HDs (10, median 2112 U/mL [IQR 719-8889]). INTERPRETATION: In our cohort of PLWHIV with well-controlled ART, stable viral suppression and robust CD4+ T cell count, inoculation with mRNA-1273 vaccine given 4 weeks apart produced detectable humoral immune response, similar to individuals without HIV infection, supporting vaccination in PLWHIV. FUNDING: This study was partially supported by Italian Ministry of Health Ricerca Corrente 2021, by Intesa San Paolo COVID-19 emergency 2020 funds, and by Fondazione Cariplo Grant (INNATE-CoV).

16.
Nat Commun ; 13(1): 3375, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697673

RESUMO

SARS-CoV-2 vaccines, administered to billions of people worldwide, mitigate the effects of the COVID-19 pandemic, however little is known about the molecular basis of antibody cross-protection to emerging variants, such as Omicron BA.1, its sublineage BA.2, and other coronaviruses. To answer this question, 276 neutralizing monoclonal antibodies (nAbs), previously isolated from seronegative and seropositive donors vaccinated with BNT162b2 mRNA vaccine, were tested for neutralization against the Omicron BA.1 and BA.2 variants, and SARS-CoV-1 virus. Only 14.2, 19.9 and 4.0% of tested antibodies neutralize BA.1, BA.2, and SARS-CoV-1 respectively. These nAbs recognize mainly the SARS-CoV-2 receptor binding domain (RBD) and target Class 3 and Class 4 epitope regions on the SARS-CoV-2 spike protein. Interestingly, around 50% of BA.2 nAbs did not neutralize BA.1 and among these, several targeted the NTD. Cross-protective antibodies derive from a variety of germlines, the most frequents of which were the IGHV1-58;IGHJ3-1, IGHV2-5;IGHJ4-1 and IGHV1-69;IGHV4-1. Only 15.6, 20.3 and 7.8% of predominant gene-derived nAbs elicited against the original Wuhan virus cross-neutralize Omicron BA.1, BA.2 and SARS-CoV-1 respectively. Our data provide evidence, at molecular level, of the presence of cross-neutralizing antibodies induced by vaccination and map conserved epitopes on the S protein that can inform vaccine design.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos/genética , Humanos , Testes de Neutralização , Pandemias/prevenção & controle , RNA Mensageiro/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas , Vacinas de mRNA
17.
Sci Immunol ; 7(67): eabl9929, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34812647

RESUMO

The development of a tractable small animal model faithfully reproducing human coronavirus disease 2019 pathogenesis would arguably meet a pressing need in biomedical research. Thus far, most investigators have used transgenic mice expressing the human ACE2 in epithelial cells (K18-hACE2 transgenic mice) that are intranasally instilled with a liquid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suspension under deep anesthesia. Unfortunately, this experimental approach results in disproportionate high central nervous system infection leading to fatal encephalitis, which is rarely observed in humans and severely limits this model's usefulness. Here, we describe the use of an inhalation tower system that allows exposure of unanesthetized mice to aerosolized virus under controlled conditions. Aerosol exposure of K18-hACE2 transgenic mice to SARS-CoV-2 resulted in robust viral replication in the respiratory tract, anosmia, and airway obstruction but did not lead to fatal viral neuroinvasion. When compared with intranasal inoculation, aerosol infection resulted in a more pronounced lung pathology including increased immune infiltration, fibrin deposition, and a transcriptional signature comparable to that observed in SARS-CoV-2­infected patients. This model may prove useful for studies of viral transmission, disease pathogenesis (including long-term consequences of SARS-CoV-2 infection), and therapeutic interventions.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/fisiopatologia , Modelos Animais de Doenças , Encefalite Viral/prevenção & controle , Queratina-18/genética , Sprays Nasais , SARS-CoV-2/fisiologia , Administração por Inalação , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , COVID-19/virologia , Encefalite Viral/mortalidade , Células Epiteliais/metabolismo , Feminino , Humanos , Queratina-18/metabolismo , Pulmão/imunologia , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Transcriptoma , Replicação Viral
18.
Front Immunol ; 13: 873195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757699

RESUMO

COVID-19 has proven to be particularly serious and life-threatening for patients presenting with pre-existing pathologies. Patients affected by rheumatic musculoskeletal disease (RMD) are likely to have impaired immune responses against SARS-CoV-2 infection due to their compromised immune system and the prolonged use of disease-modifying anti-rheumatic drugs (DMARDs), which include conventional synthetic (cs) DMARDs or biologic and targeted synthetic (b/ts) DMARDs. To provide an integrated analysis of the immune response following SARS-CoV-2 infection in RMD patients treated with different classes of DMARDs we carried out an immunological analysis of the antibody responses toward SARS-CoV-2 nucleocapsid and RBD proteins and an extensive immunophenotypic analysis of the major immune cell populations. We showed that RMD individuals under most DMARD treatments mount a sustained antibody response to the virus, with neutralizing activity. In addition, they displayed a sizable percentage of effector T and B lymphocytes. Among b-DMARDs, we found that anti-TNFα treatments are more favorable drugs to elicit humoral and cellular immune responses as compared to CTLA4-Ig and anti-IL6R inhibitors. This study provides a whole picture of the humoral and cellular immune responses in RMD patients by reassuring the use of DMARD treatments during COVID-19. The study points to TNF-α inhibitors as those DMARDs permitting elicitation of functional antibodies to SARS-CoV-2 and adaptive effector populations available to counteract possible re-infections.


Assuntos
Antirreumáticos , Tratamento Farmacológico da COVID-19 , Doenças Reumáticas , Antirreumáticos/uso terapêutico , Humanos , Imunossupressores/uso terapêutico , Doenças Reumáticas/tratamento farmacológico , SARS-CoV-2
19.
Sci Rep ; 11(1): 18043, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508139

RESUMO

Interferons (IFNs) are key cytokines involved in alerting the immune system to viral infection. After IFN stimulation, cellular transcriptional profile critically changes, leading to the expression of several IFN stimulated genes (ISGs) that exert a wide variety of antiviral activities. Despite many ISGs have been already identified, a comprehensive network of coding and non-coding genes with a central role in IFN-response still needs to be elucidated. We performed a global RNA-Seq transcriptome profile of the HCV permissive human hepatoma cell line Huh7.5 and its parental cell line Huh7, upon IFN treatment, to define a network of genes whose coordinated modulation plays a central role in IFN-response. Our study adds molecular actors, coding and non-coding genes, to the complex molecular network underlying IFN-response and shows how systems biology approaches, such as correlation networks, network's topology and gene ontology analyses can be leveraged to this aim.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Interferons/metabolismo , Biologia de Sistemas/métodos , Transcriptoma , Sítios de Ligação , Linhagem Celular Tumoral , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Fatores Reguladores de Interferon/metabolismo , Interferons/farmacologia , Neoplasias Hepáticas , Motivos de Nucleotídeos , Ligação Proteica
20.
Sci Immunol ; 6(62)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376481

RESUMO

To understand how a protective immune response against SARS-CoV-2 develops over time, we integrated phenotypic, transcriptional and repertoire analyses on PBMCs from mild and severe COVID-19 patients during and after infection, and compared them to healthy donors (HD). A type I IFN-response signature marked all the immune populations from severe patients during the infection. Humoral immunity was dominated by IgG production primarily against the RBD and N proteins, with neutralizing antibody titers increasing post infection and with disease severity. Memory B cells, including an atypical FCRL5+ T-BET+ memory subset, increased during the infection, especially in patients with mild disease. A significant reduction of effector memory, CD8+ T cells frequency characterized patients with severe disease. Despite such impairment, we observed robust clonal expansion of CD8+ T lymphocytes, while CD4+ T cells were less expanded and skewed toward TCM and TH2-like phenotypes. MAIT cells were also expanded, but only in patients with mild disease. Terminally differentiated CD8+ GZMB+ effector cells were clonally expanded both during the infection and post-infection, while CD8+ GZMK+ lymphocytes were more expanded post-infection and represented bona fide memory precursor effector cells. TCR repertoire analysis revealed that only highly proliferating T cell clonotypes, which included SARS-CoV-2-specific cells, were maintained post-infection and shared between the CD8+ GZMB+ and GZMK+ subsets. Overall, this study describes the development of immunity against SARS-CoV-2 and identifies an effector CD8+ T cell population with memory precursor-like features.


Assuntos
COVID-19/genética , COVID-19/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , SARS-CoV-2/imunologia , Transcriptoma , Adulto , Idoso , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , COVID-19/virologia , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Evolução Clonal/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Isotipos de Imunoglobulinas/imunologia , Memória Imunológica , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA