Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0083524, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470198

RESUMO

To effectively reduce the health impact of coronavirus disease (COVID-19), it is essential to adopt comprehensive strategies to protect individuals from severe acute respiratory syndrome. In that sense, much effort has been devoted to the discovery and repurposing of effective antiviral and anti-inflammatory molecules. The endogenous peptide angiotensin-(1-7) [Ang-(1-7)] has been recently proposed as a promising anti-inflammatory agent to control respiratory infections. Liposomes also emerged as a safe and effective drug carrier system for local drug delivery to the lungs. In this context, the aim of this study was to develop a liposomal formulation of Ang-(1-7) [LAng (1-7)] and investigate its impact on animal survival as well as its antiviral and anti-inflammatory efficacies after intranasal administration in transgenic K18-hACE2 mice infected with SARS-CoV-2. The liposomal formulation was prepared by the ethanol injection method, exhibiting a mean diameter of 100 nm and a polydispersity index of 0.1. Following treatment of infected mice every 12 hours for 5 days, LAng (1-7) extended animal survival compared to the control groups that received either empty liposomes, free Ang-(1-7), or phosphate-buffered saline. Furthermore, the treatment with LAng (1-7) significantly decreased the viral load, as well as IL-6 and tumor necrosis factor levels in the lungs. Conventional treatment with remdesivir by parenteral route used as a positive control promoted similar effects, leading to improved survival rates and reduced viral load in the lungs without significant effects on IL-6 level. In conclusion, liposomal Ang-(1-7) emerges as a promising formulation to improve the treatment and decrease the severity of respiratory infections, such as COVID-19.

2.
Exp Physiol ; 106(8): 1710-1719, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33998067

RESUMO

NEW FINDINGS: What is the central question of this study? Eccentric contraction exercises cause damage to muscle fibres and induce inflammatory responses. The exacerbation of this process can induce deposition of fibrous connective tissue, leading to decreased muscle function. The aim of this study was to examine the role of angiotensin-(1-7) in this context. What is the main finding and its importance? Our results show that oral treatment with angiotensin-(1-7) decreases muscle damage induced by eccentric exercise, reducing inflammation and fibrosis in the gastrocnemius and soleus muscles. This study shows a potential effect of angiotensin-(1-7) for the prevention of muscle injuries induced by physical exercise. ABSTRACT: Eccentric contraction exercises cause damage to the muscle fibres and induce an inflammatory reaction. The protective effect of angiotensin-(1-7) [Ang-(1-7)] in skeletal muscle has led us to examine the role of this peptide in modifying processes associated with inflammation and fibrogenesis induced by eccentric exercise. In this study, we sought to investigate the effects of oral administration of Ang-(1-7) formulated in hydroxypropyl ß-cyclodextrin (HPß-CD) in prevention and treatment of muscle damage after downhill running. Male Wistar rats were divided into three groups: control (untreated and not exercised; n = 10); treated/exercised HPß-CD Ang-(1-7) (n = 40); and treated/exercised HPß-CD (n = 40). Exercised groups were subjected to a single eccentric contraction exercise session on a treadmill inclined to -13° at a constant speed of 20 m/min, for 60 min. Oral administration of HPß-CD Ang-(1-7) and HPß-CD was performed 3 h before the exercise protocol and daily as a single dose, until the end of the experiment. Samples were collected 4, 12, 24, 48 and 72 h after the exercise session. The animals treated with the Ang-(1-7) showed lower levels of creatine kinase, lower levels of tumor necrosis factor-α in soleus muscle and increased levels of interleukin-10 cytokines. The inflammatory cells and deposition of fibrous connective tissue in soleus and gastrocnemius muscles were lower in the group treated with Ang-(1-7). The results of this study show that treatment with an oral formulation of Ang-(1-7) enhances the process of repair of muscle injury induced by eccentric exercise.


Assuntos
Condicionamento Físico Animal , Administração Oral , Angiotensina I , Animais , Fibrose , Masculino , Músculo Esquelético/fisiologia , Fragmentos de Peptídeos , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar
3.
Mediators Inflamm ; 2019: 2401081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918468

RESUMO

The renin-angiotensin system (RAS) peptides play an important role in inflammation. Resolution of inflammation contributes to restore tissue homeostasis, and it is characterized by neutrophil apoptosis and their subsequent removal by macrophages, which are remarkable plastic cells involved in the pathophysiology of diverse inflammatory diseases. However, the effects of RAS peptides on different macrophage phenotypes are still emerging. Here, we evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) and the most novel RAS peptide, alamandine, on resting (M0), proinflammatory M(LPS+IFN-γ), and anti-inflammatory M(IL-4) macrophage phenotypes in vitro, as well as on specific immune cell populations and macrophage subsets into the pleural cavity of LPS-induced pleurisy in mice. Our results showed that Ang-(1-7) and alamandine, through Mas and MrgD receptors, respectively, do not affect M0 macrophages but reduce the proinflammatory TNF-α, CCL2, and IL-1ß transcript expression levels in LPS+IFN-γ-stimulated macrophages. Therapeutic administration of these peptides in LPS-induced inflammation in mice decreased the number of neutrophils and M1 (F4/80lowGr1+CD11bmed) macrophage frequency without affecting the other investigated macrophage subsets. Our data suggested that both Ang-(1-7) and alamandine, through their respective receptors Mas and MrgD, promote an anti-inflammatory reprogramming of M(LPS+IFN-γ)/M1 macrophages under inflammatory circumstances and potentiate the reprogramming induced by IL-4. In conclusion, our work sheds light on the emerging proresolving properties of Ang-(1-7) and alamandine, opening new avenues for the treatment of inflammatory diseases.


Assuntos
Angiotensina I/farmacologia , Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Células Cultivadas , Interleucina-4/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
Mol Cell Biochem ; 444(1-2): 43-52, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29204818

RESUMO

Lung tumors are a frequent type of cancer in humans and a leading cause of death, and the late diagnostic contributes to high mortality rates. New therapeutic strategies are needed, and the heptapeptide angiotensin-(1-7) [ang-(1-7)] demonstrated the ability to control cancer growth rates and migration in vitro and in vivo. However, the possible use of the heptapeptide in clinical trials demands deeper analyses to elucidate molecular mechanisms of its effect in the target cells. In this study, we investigated relevant elements that control pro-inflammatory environment and cellular migration, focusing in the post-transcription mechanism using lung tumor cell line. In our cellular model, the microRNA-513a-3p was identified as a novel element targeting ITG-ß8, thereby controlling the protein level and its molecular function in the controlling of migration and pro-inflammatory environment. These findings provide useful information for future studies, using miR-513a-3p as an innovative molecular tool to control lung tumor cell migration, which will support more effective clinical treatment of the patients with the widely used chemotherapeutic agents, increasing survival rates.


Assuntos
Movimento Celular , Cadeias beta de Integrinas/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Células A549 , Humanos , Cadeias beta de Integrinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética
5.
Nanomedicine ; 14(3): 781-788, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29278747

RESUMO

There are multiple challenges for neuropharmacology in the future. Undoubtedly, one of the greatest challenges is the development of strategies for pharmacological targeting of specific brain regions for treatment of diseases. GABA is the main inhibitory neurotransmitter in the central nervous system, and dysfunction of GABAergic mechanisms is associated with different neurological conditions. Liposomes are lipid vesicles that are able to encapsulate chemical compounds and are used for chronic drug delivery. This short review reports our experience with the development of liposomes for encapsulation and chronic delivery of GABA to sites within the brain. Directions for future research regarding the efficacy and practical use of GABA-containing liposomes for extended periods of time as well as understanding and targeting neurological conditions are discussed.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos/administração & dosagem , Doenças do Sistema Nervoso/terapia , Ácido gama-Aminobutírico/administração & dosagem , Animais , Humanos , Lipossomos/química , Ácido gama-Aminobutírico/química
7.
Clin Sci (Lond) ; 130(24): 2305-2316, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27624141

RESUMO

Previous studies have demonstrated a protective effect of the Ang-(1-7)/Mas receptor axis on pathological cardiac hypertrophy. Also, the involvement of Mas receptor in exercise-induced cardiac hypertrophy has been suggested. However, the role of the Ang-(1-7)/Mas receptor on pregnancy-induced cardiac remodelling remains unknown. The objective of the present study was to evaluate the participation of the Mas receptor in the development of the cardiac hypertrophy and fibrosis induced by gestation. Female Wistar rats were divided in three groups: control, pregnant and pregnant treated with Mas receptor antagonist A-779. Wild-type (WT) and Mas-knockout (KO) mice were distributed in non-pregnant and pregnant groups. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography. The medial part of the left ventricle (LV) was collected for histological analysis. Echocardiographic analysis was used to evaluate cardiac function. SBP was not changed by pregnancy or A-779 treatment in the Wistar rats. Pharmacological blockade or genetic deletion of Mas receptor attenuates the pregnancy-induced myocyte hypertrophy. The treatment with A-779 or genetic deletion of the Mas receptor increased the collagen III deposition in LV from pregnant animals without changing fibroblast proliferation. KO mice presented a lower ejection fraction (EF), fractional shortening (FS) and stroke volume (SV) and higher end systolic volume (ESV) compared with WT. Interestingly, pregnancy restored these parameters. In conclusion, these data show that although Mas receptor blockade or deletion decreases physiological hypertrophy of pregnancy, it is associated with more extracellular matrix deposition. These alterations are associated with improvement of cardiac function through a Mas-independent mechanism.

8.
Mol Cell Biochem ; 411(1-2): 363-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26541756

RESUMO

The activated renin-angiotensin-aldosterone system modulates several metabolic pathways that contribute to left ventricular hypertrophy and heart failure. In this metabolic system, angiotensin II modulates heart morphophysiological changes triggered by a series of inflammatory and pro-inflammatory responses; however, the fine tuning associated with the control of this biochemical pathway remains unknown. Here, we investigated elements involved in the post-transcriptional regulation of the pro-inflammatory environment in the H9c2 cardiac cell line, focusing on miRNA elements that modulate PTEN expression. A cellular model of investigation was established and the miR-315-5p was identified as a novel element targeting PTEN in this cardiac cell line, thereby controlling the protein level. This interconnected pathway contributes to the control of the pro-inflammatory environment in Ang II-treated cells.


Assuntos
Inflamação/genética , MicroRNAs/fisiologia , PTEN Fosfo-Hidrolase/genética , Angiotensina II/farmacologia , Animais , Linhagem Celular , Processamento Pós-Transcricional do RNA , Ratos
9.
Curr Hypertens Rep ; 15(1): 31-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23212695

RESUMO

It is well known that the renin-angiotensin system (RAS) plays a pivotal role in the pathophysiology of cardiovascular diseases. This is well illustrated by the great success of ACE inhibitors and angiotensin (Ang) II AT(1) blockers in the treatment of hypertension and its complications. In the past decade, the classical concept of RAS orchestrated by a series of enzymatic reactions culminating in the linear generation and action of Ang II has expanded and become more complex. From the discoveries of new components such as the angiotensin converting enzyme 2 and the receptor Mas emerged a novel concept of dual opposite branches of the RAS: one vasoconstrictor and pro-hypertensive composed of ACE/Ang II/AT1; and other vasodilator and anti-hypertensive composed of ACE2/Ang-(1-7)/Mas. In this review we will discuss recent findings concerning the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular system and highlight the initiatives to develop potential therapeutic strategies based on this axis for treating hypertension.


Assuntos
Angiotensina I/efeitos dos fármacos , Anti-Hipertensivos/farmacologia , Hipertensão/fisiopatologia , Fragmentos de Peptídeos/efeitos dos fármacos , Peptidil Dipeptidase A/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Angiotensina I/fisiologia , Enzima de Conversão de Angiotensina 2 , Humanos , Hipertensão/tratamento farmacológico , Fragmentos de Peptídeos/fisiologia , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/fisiologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Receptores de Angiotensina/efeitos dos fármacos , Receptores de Angiotensina/fisiologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia
10.
Clin Dev Immunol ; 2013: 263846, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24302957

RESUMO

Hypercholesterolemia is one of the most important risk factors for erectile dysfunction, mostly due to the impairment of oxidative stress and endothelial function in the penis. The cannabinoid system might regulate peripheral mechanisms of sexual function; however, its role is still poorly understood. We investigated the effects of CB2 activation on oxidative stress and fibrosis within the corpus cavernosum of hypercholesterolemic mice. Apolipoprotein-E-knockout mice were fed with a western-type diet for 11 weeks and treated with JWH-133 (selective CB2 agonist) or vehicle during the last 3 weeks. CB2 receptor expression, total collagen content, and reactive oxygen species (ROS) production within the penis were assessed. In vitro corpus cavernosum strips preparation was performed to evaluate the nitric oxide (NO) bioavailability. CB2 protein expression was shown in cavernosal endothelial and smooth muscle cells of wild type and hypercholesterolemic mice. Treatment with JWH-133 reduced ROS production and NADPH-oxidase expression in hypercholesterolemic mice penis. Furthermore, JWH-133 increased endothelial NO synthase expression in the corpus cavernosum and augmented NO bioavailability. The decrease in oxidative stress levels was accompanied with a reduction in corpus cavernosum collagen content. In summary, CB2 activation decreased histological features, which were associated with erectile dysfunction in hypercholesterolemic mice.


Assuntos
Canabinoides/farmacologia , Disfunção Erétil/complicações , Disfunção Erétil/tratamento farmacológico , Hipercolesterolemia/complicações , Receptor CB2 de Canabinoide/agonistas , Animais , Canabinoides/administração & dosagem , Modelos Animais de Doenças , Disfunção Erétil/metabolismo , Fibrose , Hipercolesterolemia/metabolismo , Lipídeos/sangue , Masculino , Camundongos , Camundongos Knockout , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Pênis/efeitos dos fármacos , Pênis/metabolismo , Pênis/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptor CB2 de Canabinoide/metabolismo
11.
Lipids Health Dis ; 12: 136, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24044579

RESUMO

BACKGROUND: The metabolic syndrome (MS) is characterized by variable coexistence of metabolic and pathophysiological alterations which are important risk factors for developing of type II diabetes and/or cardiovascular diseases. Increased of MS patients in worldwide has stimulated the development of experimental models. However, it is still challenging to find an dietetic model that most closely approximates human MS and, in addition, is not yet fully established the effect of different diets of MS in lipid metabolism in rats of different ages. The aim of this study was to evaluate the effect of different diets of MS in lipid metabolism and ectopic fat deposition and define the most appropriate diet for inducing the characteristic disturbances of the human MS in rats of different ages. METHODS: Young (4 weeks old) and adult rats (12 weeks old) were given a high-fat (FAT) or high-fructose diet (FRU) for 13 weeks and biochemical, physiological, histological and biometric parameters were evaluated. RESULTS: In young rats, the FAT diet induced increased mean blood pressure (MAP) and heart rate (HR), body weight after 6 to 10 weeks, and in the 13th week, increased the liver, mesenteric, retroperitoneal and epididymal fat weights, fasting glucose, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and reduced HDL cholesterol; and also induced non-alcoholic fatty liver disease (NAFLD) and renal inflammatory infiltrates. In adult rats, the FRU diet induced transient elevations of MAP and HR in the 6th week, and, at 13 weeks, increased fasting glucose, triglycerides, total cholesterol, AST and ALT; increased liver, kidneys and retroperitoneal fat weights; and induced macrovesicular and microvesicular NAFLD, the presence of fat cells in the kidney, glomerular sclerosis, and liver and kidney inflammation. Additionally, the FAT and FRU diets induced, respectively, increases in liver glycogen in adults and young rats. CONCLUSIONS: Our data show that FRU diet in adult rats causes biggest change on metabolism of serum lipids and lipid accumulation in liver and kidney, while the FAT diet in young rats induces elevation of MAP and HR and higher increased visceral lipid stores, constituting the best nutritional interventions to induce MS in rats.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Frutose/administração & dosagem , Rim/metabolismo , Fígado/metabolismo , Síndrome Metabólica/metabolismo , Tecido Adiposo/efeitos dos fármacos , Fatores Etários , Animais , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas/sangue , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/patologia , Hepatopatia Gordurosa não Alcoólica , Ratos , Ratos Endogâmicos F344 , Triglicerídeos/sangue
12.
J Immunol ; 185(9): 5569-76, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20935211

RESUMO

Activation of the renin-angiotensin (Ang) system induces inflammation via interaction between Ang II and type 1 receptor on leukocytes. The relevance of the new arm of the renin-Ang system, namely Ang-converting enzyme-2/Ang-(1-7)/Mas receptor, for inflammatory responses is not known and was investigated in this study. For this purpose, two experimental models were used: Ag-induced arthritis (AIA) in mice and adjuvant-induced arthritis (AdIA) in rats. Male C57BL/6 wild-type or Mas(-/-) mice were subjected to AIA and treated with Ang-(1-7), the Mas agonist AVE 0991, or vehicle. AdIA was performed in female rats that were given AVE 0991 or vehicle. In wild-type mice, Mas protein is expressed in arthritic joints. Administration of AVE 0991 or Ang-(1-7) decreased AIA-induced neutrophil accumulation, hypernociception, and production of TNF-α, IL-1ß, and CXCL1. Histopathological analysis showed significant reduction of inflammation. Mechanistically, AVE 0991 reduced leukocyte rolling and adhesion, even when given after Ag challenge. Mas(-/-) mice subjected to AIA developed slightly more pronounced inflammation, as observed by greater neutrophil accumulation and cytokine release. Administration of AVE 0991 was without effect in Mas(-/-) mice subjected to AIA. In rats, administration of AVE 0991 decreased edema, neutrophil accumulation, histopathological score, and production of IL-1ß and CXCL1 induced by AdIA. Therefore, activation of Mas receptors decreases neutrophil influx and cytokine production and causes significant amelioration of arthritis in experimental models of arthritis in rats and mice. This approach might represent a novel therapeutic opportunity for arthritis.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/imunologia , Imidazóis/farmacologia , Proteínas Proto-Oncogênicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Animais , Artrite Experimental/patologia , Western Blotting , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/imunologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/imunologia
13.
Cells ; 10(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685735

RESUMO

The renin-angiotensin system (RAS) plays a pivotal role in a wide series of physiological processes, among which inflammation and blood pressure regulation. One of its key components, the angiotensin-converting enzyme 2, has been identified as the entry point of the SARS-CoV-2 virus into the host cells, and therefore a lot of research has been devoted to study RAS dysregulation in COVID-19. Here we discuss the alterations of the regulatory RAS axes due to SARS-CoV-2 infection on the basis of a series of recent clinical investigations and experimental analyzes quantifying, e.g., the levels and activity of RAS components. We performed a comprehensive meta-analysis of these data in view of disentangling the links between the impaired RAS functioning and the pathophysiological characteristics of COVID-19. We also review the effects of several RAS-targeting drugs and how they could potentially help restore the normal RAS functionality and minimize the COVID-19 severity. Finally, we discuss the conflicting evidence found in the literature and the open questions on RAS dysregulation in SARS-CoV-2 infection whose resolution would improve our understanding of COVID-19.


Assuntos
COVID-19/sangue , COVID-19/metabolismo , Sistema Renina-Angiotensina , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Humanos , Peptidil Dipeptidase A/metabolismo , Renina/farmacologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
14.
Protein Pept Lett ; 28(12): 1425-1433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34792000

RESUMO

BACKGROUND: Acute Kidney Injury (AKI), a common disease of the urinary system, can be induced by high doses of gentamicin (GM). The renin-angiotensin system exerts a key role in the progression of the AKI since elevated intrarenal levels of Ang II, and ACE activity is found in this condition. However, it is unknown whether oral administration of angiotensin (Ang)-(1-7), a heptapeptide that evokes opposite effects of Ang II, may attenuate the renal injuries induced by gentamicin. OBJECTIVES: To evaluate the effects of Ang-(1-7) on GM-induced renal dysfunction in rats. METHODS: AKI was induced by subcutaneous administration of GM (80 mg/Kg) for 5 days. Simultaneously, Ang-(1-7) included in hydroxypropyl ß-cyclodextrin (HPßCD) was administered by gavage [46 µg/kg HPßCD + 30 µg/kg Ang-(1-7)]. At the end of the treatment period (sixth day), the rats were housed in metabolic cages for renal function evaluation. Thereafter, blood and kidney samples were collected. RESULTS: Ang-(1-7) attenuated the increase of the plasmatic creatinine and proteinuria caused by GM but did not change the glomerular filtration rate nor tubular necrosis. Ang-(1-7) attenuated the increased urinary flow and the fractional excretion of H2O and potassium observed in GM rats but intensified the elevated excretion of sodium in these animals. Morphological analysis showed that Ang-(1-7) also reduced the tubular vacuolization in kidneys from GM rats. CONCLUSION: Ang-(1-7) promotes selective beneficial effects in renal injuries induced by GM.


Assuntos
Injúria Renal Aguda , Angiotensina I/farmacologia , Gentamicinas/efeitos adversos , Fragmentos de Peptídeos/farmacologia , Injúria Renal Aguda/sangue , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Administração Oral , Animais , Avaliação de Medicamentos , Gentamicinas/farmacologia , Masculino , Ratos , Ratos Wistar
15.
BMC Sports Sci Med Rehabil ; 13(1): 47, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957973

RESUMO

BACKGROUND: The ECA2/Ang-(1-7)/Mas axis is shown to be involved in effects mediated by physical exercise, as it can induce the release of nitric oxide (ON) and bradykinin (BK), which are potent vasodilators. The vasodilating action the NO/BK can contribute to increased metabolic efficiency in muscle tissue and central nervous system. The formulation HPß-CD-Ang-(1-7) through its mechanisms of action can be a promising supplement to aid in the maintenance and improvement of performance and may also favor recovery during competitions. The premise of this study was to investigate the effects of acute oral supplementation HPß-CD-Ang-(1-7) on the performance of mountain bike (MTB) practitioners. METHODS: Fourteen recreational athletes, involved in training programs for at least one year, participated in this crossover design study. Subjects underwent two days of testing with a seven-day interval. HPß-CD-Ang-(1-7) (1.75 mg) and HPßCD-Placebo were provided in capsules three hours prior to tests. To determine the safety of the HPß-CD-Ang-(1-7) formulation associated with physical effort, cardiovascular parameters heart rate (HR) and blood pressure (BP) were analyzed. Physical performance was measured using maximal oxygen uptake (VO2), total exercise time (TET), mechanical work (MW), mechanical efficiency (ME), and rating of perceived exertion (RPE). Respiratory exchange coefficient (REC), lactate and non-esterified fatty acids (NEFAs) were measured. Maximal incremental tests were performed on a progressively loaded leg cycle ergometer. RESULTS: There were no significant differences in terms of HR or BP at rest and maximum effort between the HPß-CD-Ang-(1-7) and placebo groups. The VO2max showed significant differences (p = 0.04). It was higher in the Ang-(1-7)condition (66.15 mlO2.kg- 1.min- 1) compared to the placebo (60.72 mlO2.kg- 1.min- 1). This was also observed for TET (Ang-(1-7) 39.10 min vs. placebo 38.14 min; p = 0.04), MW (Ang-(1-7) 156.7 vs. placebo 148.2; p = 0.04), and at the lowest RPE (Ang-(1-7) vs. placebo; p = 0.009). No significant differences were observed for REC, NEFAs, or Lactate. CONCLUSIONS: These results suggest that HPß-CD-Ang-(1-7) improves the physical performance of MTB recreational athletes and could be a promising supplement. TRIAL REGISTRATION: RBR-2 × 56pw8, registered January 15th, 2021. The study was prospectively registered.

16.
Molecules ; 15(6): 4067-84, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20657427

RESUMO

Valsartan, a water-insoluble drug, is mainly used in the treatment of hypertension albeit with reduced oral bioavailability. The aim of work was to develop a valsartan:beta-cyclodextrin (VAL:beta-CD) pharmaceutical composition in order to improve its water solubility and bioavailability. The VAL:beta-CD complexes were prepared by the kneading, solid dispersion and freeze-drying methods, of which the freeze-drying method (FDY) was found to be the best to prepare an inclusion complex. A physical mixture PM was also prepared. Complexes were characterized by thermal analysis, Fourier transformed-infrared (FTIR) spectroscopy, Powder X-ray diffractometry, intrinsic dissolution and NMR (2D-ROESY). Phase-solubility analysis showed A(L)-type diagrams with beta-cyclodextrin (beta-CD). Microcalorimetric titrations suggested the formation of 1:1 inclusion complex between VAL and beta-CD. The apparent stability constants K(1:1) calculated from phase-solubility plots were 165.4 M(-1) (298 K), 145.0 M(-1) (303 K) and 111.3 M(-1) (310 K). In vivo experiments in rats showed that reduction in arterial pressure for the FDY complex is better than with valsartan used alone. The better activity of FDY can be attributed to the higher solubility of valsartan after inclusion in the cyclodextrin cavity, as suggest by the intrinsic dissolution studies.


Assuntos
Anti-Hipertensivos/química , Anti-Hipertensivos/uso terapêutico , Ciclodextrinas/química , Hipertensão/tratamento farmacológico , Tetrazóis/química , Valina/análogos & derivados , Animais , Hipertensão/induzido quimicamente , Espectroscopia de Ressonância Magnética , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Valina/química , Valsartana
17.
Front Pharmacol ; 11: 1263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982727

RESUMO

In previous studies we have shown that oral Ang-(1-7) has a beneficial therapeutic effect on cardiometabolic disturbances present in metabolic syndrome (MetS). Based on the fact that Ang-(1-7) acts through release of nitric oxide (NO), a new peptide, A-1317 was engineered adding the amino acid L-Arginine, the NO precursor, to the N-terminal portion of the Ang-(1-7). Therefore, in a single molecule the substrate and the activator of NO are combined. In the present study, we evaluated the effect of A-1317 oral treatment on liver-glucose metabolism in MetS induced by high fat (HF) diet in rats. Rats were subjected to control (AIN-93M, CT) or HF diets for 15 weeks to induce MetS and treated with A-1317, Ang-(1-7) included into hydroxypropyl-ß-cyclodextrin (HPßCD) or empty HPßCD (E), in the last 7 weeks. At the end of 15 weeks, hemodynamic, biometric, and biochemical parameters, redox process, and qRT-PCR gene expression of NO synthase and RAS components were evaluated in the liver. HF/E rats increased body mass gain, adiposity index, despite the reduction in food intake, increased plasma leptin, total cholesterol, triglycerides, ALT, fasting blood glucose, OGTT and insulin, HOMA-IR and MAP and HR. Furthermore, the MetS rats presented increased in liver angiotensinogen, AT1R, ACE mRNA gene expression and concentration of MDA and carbonylated protein. Both Ang-(1-7) and A-1317 oral treatment in MetS rats reverted most of these alterations. However, A-1317 was more efficient in reducing body mass gain, ALT, AST, total cholesterol, insulin, fasting blood glucose, ameliorating ß cell capacity by increasing HOMA-ß and QUICKI, whereas Ang-(1-7) reduced HOMA-ß and QUICKI. In addition, Ang-(1-7) increased Mas and AKT liver mRNA gene expression, while A-1317 increased both Mas and MRGD and AMPK liver mRNA gene expression, suggesting a distinct pathway of action of Ang-(1-7) and A-1317 in MetS rats. Taken together, our data showed that treatment with A-1317 was able to ameliorate MetS disorders and suggested that this effect was mainly via MRGD via activation of AMPK and increasing ß cell function.

18.
Oxid Med Cell Longev ; 2019: 5868935, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396301

RESUMO

In prevention studies of metabolic syndrome (MetS), Ang-(1-7) has shown to improve the insulin signaling. We evaluated the HPßCD/Ang-(1-7) treatment on lipid metabolism, renin-angiotensin system (RAS) components, oxidative stress, and insulin pathway in the liver and gastrocnemius muscle and hepatic steatosis in rats with established MetS. After 7 weeks of high-fat (FAT) or control (CT) diets, rats were treated with cyclodextrin (HPßCD) or HPßCD/Ang-(1-7) in the last 6 weeks. FAT-HPßCD/empty rats showed increased adiposity index and body mass, gene expression of ACE/ANG II/AT1R axis, and oxidative stress. These results were accompanied by imbalances in the insulin pathway, worsening of liver function, hyperglycemia, and dyslipidemia. Oral HPßCD/Ang-(1-7) treatment decreased ACE and AT1R, increased ACE2 gene expression in the liver, and restored thiobarbituric acid reactive substances (TBARS), catalase (CAT), superoxide dismutase (SOD), insulin receptor substrate (Irs-1), glucose transporter type 4 (GLUT4), and serine/threonine kinase 2 (AKT-2) gene expression in the liver and gastrocnemius muscle improving hepatic function, cholesterol levels, and hyperglycemia in MetS rats. Overall, HPßCD/Ang-(1-7) treatment restored the RAS components, oxidative stress, and insulin signaling in the liver and gastrocnemius muscle contributing to the establishment of blood glucose and lipid homeostasis in MetS rats.


Assuntos
Angiotensina I/farmacologia , Antioxidantes/farmacologia , Síndrome Metabólica/patologia , Fragmentos de Peptídeos/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Administração Oral , Enzima de Conversão de Angiotensina 2 , Animais , Catalase/genética , Catalase/metabolismo , Ciclodextrinas/farmacologia , Dieta Hiperlipídica , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/veterinária , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ratos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
19.
Vasc Health Risk Manag ; 4(4): 787-803, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19065996

RESUMO

In the past few years the classical concept of the renin-angiotensin system (RAS) has experienced substantial conceptual changes. The identification of the renin/prorenin receptor, the angiotensin-converting enzyme homologue ACE2 as an angiotensin peptide processing enzyme, Mas as a receptor for Ang-(1-7) and the possibility of signaling through ACE, have contributed to switch our understanding of the RAS from the classical limited-proteolysis linear cascade to a cascade with multiple mediators, multiple receptors, and multi-functional enzymes. In this review we will focus on the recent findings related to RAS and, in particular, on its role in diabetes by discussing possible interactions between RAS mediators, endothelium function, and insulin signaling transduction pathways as well as the putative role of ACE2-Ang-(1-7)-Mas axis in disease pathogenesis.


Assuntos
Diabetes Mellitus/metabolismo , Sistema Renina-Angiotensina , Transdução de Sinais , Angiotensina I/metabolismo , Angiotensina II/análogos & derivados , Angiotensina II/metabolismo , Angiotensina III/metabolismo , Enzima de Conversão de Angiotensina 2 , Angiotensinogênio/metabolismo , Animais , Diabetes Mellitus/enzimologia , Endotélio Vascular/metabolismo , Humanos , Receptores de Hialuronatos , Insulina/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Renina/metabolismo
20.
J Physiol Biochem ; 74(3): 441-454, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29797227

RESUMO

Physical training (PT) has been considered as a treatment in metabolic syndrome (MS), since it induces thermogenic activity in brown (BAT) and white (WAT) adipose tissues. We evaluated the therapeutic effect of PT on activity of WAT and BAT in rats with MS induced by high-fat diet (30% lard) for 13 weeks and submitted, for the last 6 weeks, to swimming or kept sedentary (SED) rats. MS-SED rats compared to control diet (CT-SED) rats showed low physical fitness and high levels of glucose, insulin, homeostasis evaluation of insulin resistance (HOMA-IR), homeostasis evaluation of the functional capacity of ß-cells (HOMA-ß), and blood pressure. The gastrocnemius muscle decreased in peroxisome proliferator-activated receptor gamma coactivator 1-alpha and beta (PGC-1α, PGC-1ß), and uncoupled protein 2 and 3 (UCP2 and UCP3) expressions. Both WAT and BAT increased in the adipocyte area and decreased in blood vessels and fibroblast numbers. WAT increased in expression of pro-inflammatory adipokines and decreased in anti-inflammatory adipokine and adiponectin. WAT and gastrocnemius showed impairment in the insulin signaling pathway. In response to PT, MS rats showed increased physical fitness and restoration of certain biometric and biochemical parameters and blood pressure. PT also induced thermogenic modulations in skeletal muscle, WAT and BAT, and also improved the insulin signaling pathway. Collectively, PT was effective in treating MS by inducing improvement in physical fitness and interchangeable effects between skeletal muscle, WAT and BAT, suggesting a development of brown-like adipocyte cells.


Assuntos
Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Adiposidade , Resistência à Insulina , Síndrome Metabólica/terapia , Condicionamento Físico Animal , Termogênese , Adipocinas/genética , Adipocinas/metabolismo , Tecido Adiposo Marrom/irrigação sanguínea , Tecido Adiposo Marrom/imunologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/irrigação sanguínea , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/sangue , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Regulação da Expressão Gênica , Hiperglicemia/etiologia , Hiperglicemia/prevenção & controle , Hiperinsulinismo/etiologia , Hiperinsulinismo/prevenção & controle , Hipertensão/etiologia , Hipertensão/prevenção & controle , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/fisiopatologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distribuição Aleatória , Ratos Endogâmicos F344 , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA