Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chembiochem ; 24(24): e202300410, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37800606

RESUMO

During placental formation, cytotrophoblasts (CTBs) fuse into multinucleate, microvilli-coated syncytiotrophoblasts (STBs), which contact maternal blood, mediating nutrient, metabolite, and gas exchange between mother and fetus, and providing a barrier against fetal infection. Trophoblasts remodel the surrounding extracellular matrix through the secretion of matrix metalloproteinases (MMPs). Maternal obesity and diabetes mellitus can negatively impact fetal development and may impair trophoblast function. We sought to model the impact of metabolic stress on STB function by examining MMP and hormone secretion. The BeWo CTB cell line was syncytialized to STB-like cells with forskolin. Cell morphology was examined by electron microscopy and immunofluorescence; phenotype was further assessed by ELISA and RT-qPCR. STBs were exposed to a metabolic stress cocktail (MetaC: 30 mM glucose, 10 nM insulin, and 0.1 mM palmitic acid). BeWo syncytialization was demonstrated by increased secretion of HCGß and progesterone, elevated syncytin gene expression (ERVW-1 and ERVFRD-1), loss of tight junctions, and increased surface microvilli. MetaC strongly suppressed syncytin gene expression (ERVW-1 and ERVFRD-1), suppressed HCGß and progesterone secretion, and altered both MMP-9 and MMP-2 production. Metabolic stress modeling diabetes and obesity altered BeWo STB hormone and MMP production in vitro.


Assuntos
Placenta , Progesterona , Feminino , Gravidez , Humanos , Placenta/metabolismo , Progesterona/metabolismo , Trofoblastos/metabolismo , Linhagem Celular
2.
Anaerobe ; 80: 102699, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36702174

RESUMO

We analyzed our challenging experience with a randomized controlled trial of misoprostol for prevention of recurrent C. difficile. Despite careful prescreening and thoughtful protocol modifications to facilitate enrollment, we closed the study early after enrolling just 7 participants over 3 years. We share lessons learned, noting the importance of feasibility studies, inclusion of biomarker outcomes, and dissemination of such findings to inform future research design and implementation successes.


Assuntos
COVID-19 , Clostridioides difficile , Infecções por Clostridium , Misoprostol , Humanos , COVID-19/prevenção & controle , Misoprostol/uso terapêutico , Clostridioides , Estudos de Viabilidade , Infecções por Clostridium/prevenção & controle
3.
J Bacteriol ; 204(4): e0056221, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35343774

RESUMO

Enteroinvasive Escherichia coli (EIEC) is a diarrheagenic E. coli pathotype carrying a virulence plasmid that encodes a type III secretion system (TTSS) directly implicated in bacterial cell invasion. Since 2012, EIEC serotype O96:H19 has been recognized in Europe, Colombia, and most recently Uruguay. In addition to the invasion phenotype, the strains isolated from Colombian children with moderate-to-severe gastroenteritis had a strong biofilm formation phenotype, and as a result, they are referred to as biofilm-forming enteroinvasive E. coli (BF-EIEC). The objective of this study was to characterize the biofilm formation phenotype of the BF-EIEC O96:H19 strain 52.1 isolated from a child with moderate-to-severe gastroenteritis in Colombia. Random mutagenesis using Tn5 transposons identified 100 mutants unable to form biofilm; 20 of those had mutations within the pgaABCD operon. Site-directed mutagenesis of pgaB and pgaC confirmed the importance of these genes in N-acetylglucosamine-mediated biofilm formation. Both biofilm formation and TTSS-mediated host cell invasion were associated with host cell damage on the basis of cytotoxic assays comparing the wild type, invasion gene mutants, and biofilm formation mutants. Multilocus sequence typing-based phylogenetic analysis showed that BF-EIEC strain 52.1 does not cluster with classic EIEC serotype strains. Instead, BF-EIEC strain 52.1 clusters with EIEC serotype O96:H19 strains described in Europe and Uruguay. In conclusion, BF-EIEC O96:H19, an emerging pathogen associated with moderate-to-severe acute gastroenteritis in children under 5 years of age in Colombia, invades cells and has a strong biofilm formation capability. Both phenotypes are independently associated with in vitro cell cytotoxicity, and they may explain, at least in part, the higher disease severity reported in Europe and Latin America. IMPORTANCE Enteroinvasive Escherichia coli (EIEC), a close relative of Shigella, is implicated in dysenteric diarrhea. EIEC pathogenicity involves cell invasion mediated by effector proteins delivered by a type III secretion system (TTSS) that disrupt the cell cytoskeleton. These proteins and the VirF global regulator are encoded by a large (>200 kb) invasion plasmid (pINV). This study reports an emergent EIEC possessing a cell invasion phenotype and a strong polysaccharide matrix-mediated biofilm formation phenotype. Both phenotypes contribute to host cell cytotoxicity in vitro and may contribute to the severe disease reported among children and adults in Europe and Latin America.


Assuntos
Infecções por Escherichia coli , Gastroenterite , Shigella , Biofilmes , Pré-Escolar , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Gastroenterite/microbiologia , Humanos , Filogenia , Shigella/genética , Sistemas de Secreção Tipo III
4.
Chembiochem ; 22(12): 2124-2133, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33755306

RESUMO

Group B Streptococcus (GBS) is an encapsulated Gram-positive human pathogen that causes invasive infections in pregnant hosts and neonates, as well as immunocompromised individuals. Colonization of the human host requires the ability to adhere to mucosal surfaces and circumnavigate the nutritional challenges and antimicrobial defenses associated with the innate immune response. Biofilm formation is a critical process to facilitate GBS survival and establishment of a replicative niche in the vertebrate host. Previous work has shown that the host responds to GBS infection by producing the innate antimicrobial glycoprotein lactoferrin, which has been implicated in repressing bacterial growth and biofilm formation. Additionally, lactoferrin is highly abundant in human breast milk and could serve a protective role against invasive microbial pathogens. This study demonstrates that human breast milk lactoferrin has antimicrobial and anti-biofilm activity against GBS and inhibits its adherence to human gestational membranes. Together, these results indicate that human milk lactoferrin could be used as a prebiotic chemotherapeutic strategy to limit the impact of bacterial adherence and biofilm formation on GBS-associated disease outcomes.


Assuntos
Antibacterianos/farmacologia , Lactoferrina/imunologia , Leite Humano/química , Streptococcus agalactiae/efeitos dos fármacos , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/imunologia , Biofilmes/efeitos dos fármacos , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Lactoferrina/química , Testes de Sensibilidade Microbiana , Streptococcus agalactiae/imunologia
5.
Chembiochem ; 22(18): 2783-2790, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34169626

RESUMO

Chronic infection with Helicobacter pylori increases risk of gastric diseases including gastric cancer. Despite development of a robust immune response, H. pylori persists in the gastric niche. Progression of gastric inflammation to serious disease outcomes is associated with infection with H. pylori strains which encode the cag Type IV Secretion System (cag T4SS). The cag T4SS is responsible for translocating the oncogenic protein CagA into host cells and inducing pro-inflammatory and carcinogenic signaling cascades. Our previous work demonstrated that nutrient iron modulates the activity of the T4SS and biogenesis of T4SS pili. In response to H. pylori infection, the host produces a variety of antimicrobial molecules, including the iron-binding glycoprotein, lactoferrin. Our work shows that apo-lactoferrin exerts antimicrobial activity against H. pylori under iron-limited conditions, while holo-lactoferrin enhances bacterial growth. Culturing H. pylori in the presence of holo-lactoferrin prior to co-culture with gastric epithelial cells, results in repression of the cag T4SS activity. Concomitantly, a decrease in biogenesis of cag T4SS pili at the host-pathogen interface was observed under these culture conditions by high-resolution electron microscopy analyses. Taken together, these results indicate that acquisition of alternate sources of nutrient iron plays a role in regulating the pro-inflammatory activity of a bacterial secretion system and present novel therapeutic targets for the treatment of H. pylori-related disease.


Assuntos
Helicobacter pylori/efeitos dos fármacos , Lactoferrina/farmacologia , Sistemas de Secreção Tipo IV/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa Gástrica/citologia , Mucosa Gástrica/metabolismo , Gerbillinae , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Imunidade Inata , Interleucina-8/metabolismo , Ferro/metabolismo , Lactoferrina/química , Lactoferrina/metabolismo , Lactoferrina/uso terapêutico , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Isoformas de Proteínas/uso terapêutico , Sistemas de Secreção Tipo IV/antagonistas & inibidores
6.
BMC Microbiol ; 21(1): 21, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422000

RESUMO

BACKGROUND: Acinetobacter baumannii is a gram-negative bacterium which causes opportunistic infections in immunocompromised hosts. Genome plasticity has given rise to a wide range of strain variation with respect to antimicrobial resistance profiles and expression of virulence factors which lead to altered phenotypes associated with pathogenesis. The purpose of this study was to analyze clinical strains of A. baumannii for phenotypic variation that might correlate with virulence phenotypes, antimicrobial resistance patterns, or strain isolation source. We hypothesized that individual strain virulence phenotypes might be associated with anatomical site of isolation or alterations in susceptibility to antimicrobial interventions. METHODOLOGY: A cohort of 17 clinical isolates of A. baumannii isolated from diverse anatomical sites were evaluated to ascertain phenotypic patterns including biofilm formation, hemolysis, motility, and antimicrobial resistance. Antibiotic susceptibility/resistance to ampicillin-sulbactam, amikacin, ceftriaxone, ceftazidime, cefotaxime, ciprofloxacin, cefepime, gentamicin, levofloxacin, meropenem, piperacillin, trimethoprim-sulfamethoxazole, ticarcillin- K clavulanate, tetracyclin, and tobramycin was determined. RESULTS: Antibiotic resistance was prevalent in many strains including resistance to ampicillin-sulbactam, amikacin, ceftriaxone, ceftazidime, cefotaxime, ciprofloxacin, cefepime, gentamicin, levofloxacin, meropenem, piperacillin, trimethoprim-sulfamethoxazole, ticarcillin- K clavulanate, tetracyclin, and tobramycin. All strains tested induced hemolysis on agar plate detection assays. Wound-isolated strains of A. baumannii exhibited higher motility than strains isolated from blood, urine or Foley catheter, or sputum/bronchial wash. A. baumannii strains isolated from patient blood samples formed significantly more biofilm than isolates from wounds, sputum or bronchial wash samples. An inverse relationship between motility and biofilm formation was observed in the cohort of 17 clinical isolates of A. baumannii tested in this study. Motility was also inversely correlated with induction of hemolysis. An inverse correlation was observed between hemolysis and resistance to ticarcillin-k clavulanate, meropenem, and piperacillin. An inverse correlation was also observed between motility and resistance to ampicillin-sulbactam, ceftriaxone, ceftoxamine, ceftazidime, ciprofloxacin, or levofloxacin. CONCLUSIONS: Strain dependent variations in biofilm and motility are associated with anatomical site of isolation. Biofilm and hemolysis production both have an inverse association with motility in the cohort of strains utilized in this study, and motility and hemolysis were inversely correlated with resistance to numerous antibiotics.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/patogenicidade , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Ferimentos e Lesões/microbiologia , Infecções por Acinetobacter/sangue , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Adaptação Fisiológica , Carbapenêmicos/farmacologia , Catéteres/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Piperacilina/farmacologia , Escarro/microbiologia , Tennessee , Urina/microbiologia
7.
Cell Microbiol ; 22(8): e13210, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32329205

RESUMO

Campylobacter jejuni is the leading cause of bacterial-derived gastroenteritis worldwide and can lead to several post-infectious inflammatory disorders. Despite the prevalence and health impacts of the bacterium, interactions between the host innate immune system and C. jejuni remain poorly understood. To expand on earlier work demonstrating that neutrophils traffic to the site of infection in an animal model of campylobacteriosis, we identified significant increases in several predominantly neutrophil-derived proteins in the faeces of C. jejuni-infected patients, including lipocalin-2, myeloperoxidase and neutrophil elastase. In addition to demonstrating that these proteins significantly inhibited C. jejuni growth, we determined they are released during formation of C. jejuni-induced neutrophil extracellular traps (NETs). Using quantitative and qualitative methods, we found that purified human neutrophils are activated by C. jejuni and exhibit signatures of NET generation, including presence of protein arginine deiminase-4, histone citrullination, myeloperoxidase, neutrophil elastase release and DNA extrusion. Production of NETs correlated with C. jejuni phagocytosis/endocytosis and invasion of neutrophils suggesting that host- and bacterial-mediated activities are responsible for NET induction. Further, NET-like structures were observed within intestinal tissue of C. jejuni-infected ferrets. Finally, induction of NETs significantly increased human colonocyte cytotoxicity, indicating that NET formation during C. jejuni infection may contribute to observed tissue pathology. These findings provide further understanding of C. jejuni-neutrophil interactions and inflammatory responses during campylobacteriosis.


Assuntos
Campylobacter jejuni/imunologia , Campylobacter jejuni/fisiologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/microbiologia , Fezes/química , Interações entre Hospedeiro e Microrganismos/imunologia , Neutrófilos/imunologia , Animais , Infecções por Campylobacter/imunologia , Infecções por Campylobacter/microbiologia , Células Cultivadas , Colo/citologia , Colo/microbiologia , Colo/patologia , Furões , Humanos , Inflamação , Elastase de Leucócito/metabolismo , Masculino , Neutrófilos/química , Neutrófilos/microbiologia , Fagocitose
8.
J Infect Dis ; 215(4): 653-657, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27436434

RESUMO

Staphylococcus aureus, a metabolically flexible gram-positive pathogen, causes infections in a variety of tissues. Recent evidence implicates S. aureus as an emerging cause of chorioamnionitis and premature rupture of membranes, which are associated with preterm birth and neonatal disease. We demonstrate here that S. aureus infects and forms biofilms on the choriodecidual surface of explanted human gestational membranes. Concomitantly, S. aureus elicits the production of proinflammatory cytokines, which could ultimately perturb maternal-fetal tolerance during pregnancy. Therefore, targeting the immunological response to S. aureus infection during pregnancy could attenuate disease among infected individuals, especially in the context of antibiotic resistance.


Assuntos
Corioamnionite/imunologia , Citocinas/imunologia , Complicações Infecciosas na Gravidez/imunologia , Infecções Estafilocócicas/imunologia , Biofilmes , Corioamnionite/microbiologia , Farmacorresistência Bacteriana Múltipla , Feminino , Humanos , Recém-Nascido , Placenta/imunologia , Placenta/microbiologia , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Nascimento Prematuro/imunologia , Nascimento Prematuro/microbiologia , Staphylococcus aureus/imunologia
9.
Sci Adv ; 9(32): eade2693, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566649

RESUMO

Histone modifications control numerous processes in eukaryotes, including inflammation. Some bacterial pathogens alter the activity or expression of host-derived factors, including sirtuins, to modify histones and induce responses that promote infection. In this study, we identified a deacetylase encoded by Campylobacter jejuni which has sirtuin activities and contributes to activation of human neutrophils by the pathogen. This sirtuin is secreted from the bacterium into neutrophils, where it associates with and deacetylates host histones to promote neutrophil activation and extracellular trap production. Using the murine model of campylobacteriosis, we found that a mutant of this bacterial sirtuin efficiently colonized the gastrointestinal tract but was unable to induce cytokine production, gastrointestinal inflammation, and tissue pathology. In conclusion, these results suggest that secreted bacterial sirtuins represent a previously unreported class of bacterial effector and that bacterial-mediated modification of host histones is responsible for the inflammation and pathology that occurs during campylobacteriosis.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Camundongos , Humanos , Animais , Campylobacter jejuni/fisiologia , Histonas , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/patologia , Ativação de Neutrófilo , Inflamação
10.
ACS Infect Dis ; 8(12): 2405-2412, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36445344

RESUMO

Group B Streptococcus (GBS) is a gram-positive bacterium that can cause invasive infections in immunocompromised, elderly, pregnant, or neonatal patients. The invertebrate model, Galleria mellonella, has emerged as an effective tool to study GBS-host interactions; specifically, those conserved within the innate arm of the immune system. We sought to determine the role of metal homeostasis functions in GBS infections of G. mellonella larvae and to validate this model as a tool to study GBS-host interactions. Our results indicate that wild-type GBS infects G. mellonella in a dose-dependent manner, replicates in the invertebrate host, induces larval melanization and larval killing. These results were significantly abrogated in cohorts of larvae infected with the isogenic cadD deletion mutant. Additionally, complementation restored GBS-dependent infection, bacterial burden, larval melanization, and killing to wild-type levels. Together, these results indicate that the G. mellonella model is a useful tool for studying GBS pathogenesis.


Assuntos
Streptococcus agalactiae , Recém-Nascido , Humanos , Idoso
11.
mBio ; 13(6): e0287022, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36409087

RESUMO

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a Gram-positive encapsulated bacterium that colonizes the gastrointestinal tract of 30 to 50% of humans. GBS causes invasive infection during pregnancy that can lead to chorioamnionitis, funisitis, preterm prelabor rupture of membranes (PPROM), preterm birth, neonatal sepsis, and maternal and fetal demise. Upon infecting the host, GBS encounters sentinel innate immune cells, such as macrophages, within reproductive tissues. Once phagocytosed by macrophages, GBS upregulates the expression of the gene npx, which encodes an NADH peroxidase. GBS mutants with an npx deletion (Δnpx) are exquisitely sensitive to reactive oxygen stress. Furthermore, we have shown that npx is required for GBS survival in both THP-1 and placental macrophages. In an in vivo murine model of ascending GBS vaginal infection during pregnancy, npx is required for invading reproductive tissues and is critical for inducing disease progression, including PPROM and preterm birth. Reproductive tissue cytokine production was also significantly diminished in Δnpx mutant-infected animals compared to that in animals infected with wild-type (WT) GBS. Complementation in trans reversed this phenotype, indicating that npx is critical for GBS survival and the initiation of proinflammatory signaling in the gravid host. IMPORTANCE This study sheds new light on the way that group B Streptococcus (GBS) defends itself against oxidative stress in the infected host. The enzyme encoded by the GBS gene npx is an NADH peroxidase that, our study reveals, provides defense against macrophage-derived reactive oxygen stress and facilitates infections of the uterus during pregnancy. This enzyme could represent a tractable target for future treatment strategies against invasive GBS infections.


Assuntos
Corioamnionite , Nascimento Prematuro , Infecções Estreptocócicas , Gravidez , Humanos , Feminino , Recém-Nascido , Animais , Camundongos , Placenta , Streptococcus agalactiae , Virulência , Corioamnionite/microbiologia , Macrófagos , Infecções Estreptocócicas/microbiologia , Oxigênio
12.
Nat Commun ; 13(1): 5392, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104331

RESUMO

Perinatal infection with Streptococcus agalactiae, or Group B Streptococcus (GBS), is associated with preterm birth, neonatal sepsis, and stillbirth. Here, we study the interactions of GBS with macrophages, essential sentinel immune cells that defend the gravid reproductive tract. Transcriptional analyses of GBS-macrophage co-cultures reveal enhanced expression of a gene encoding a putative metal resistance determinant, cadD. Deletion of cadD reduces GBS survival in macrophages, metal efflux, and resistance to metal toxicity. In a mouse model of ascending infection during pregnancy, the ΔcadD strain displays attenuated bacterial burden, inflammation, and cytokine production in gestational tissues. Furthermore, depletion of host macrophages alters cytokine expression and decreases GBS invasion in a cadD-dependent fashion. Our results indicate that GBS cadD plays an important role in metal detoxification, which promotes immune evasion and bacterial proliferation in the pregnant host.


Assuntos
Nascimento Prematuro , Streptococcus agalactiae , Animais , Citocinas , Feminino , Humanos , Recém-Nascido , Contagem de Leucócitos , Macrófagos/microbiologia , Metais , Camundongos , Gravidez , Nascimento Prematuro/microbiologia , Streptococcus agalactiae/genética
13.
Am J Reprod Immunol ; 86(6): e13501, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570418

RESUMO

Group B Streptococcus (GBS), also known as Streptococcus agalactiae is a Gram-positive bacterium commonly encountered as part of the microbiota within the human gastrointestinal tract. A common cause of infections during pregnancy, GBS is responsible for invasive diseases ranging from urinary tract infections to chorioamnionitis and neonatal sepsis. Diabetes mellitus (DM) is a chronic disease resulting from impaired regulation of blood glucose levels. The incidence of DM has steadily increased worldwide to affecting over 450 million people. Poorly controlled DM is associated with multiple health comorbidities including an increased risk for infection. Epidemiologic studies have clearly demonstrated that DM correlates with an increased risk for invasive GBS infections, including skin and soft tissue infections and sepsis in non-pregnant adults. However, the impact of DM on risk for invasive GBS urogenital infections, particularly during the already vulnerable time of pregnancy, is less clear. We review the evolving epidemiology, immunology, and pathophysiology of GBS urogenital infections including rectovaginal colonization during pregnancy, neonatal infections of infants exposed to DM in utero, and urinary tract infections in pregnant and non-pregnant adults in the context of DM and highlight in vitro studies examining why DM might increase risk for GBS urogenital infection.


Assuntos
Hospedeiro Imunocomprometido , Complicações Infecciosas na Gravidez/imunologia , Gravidez em Diabéticas/imunologia , Infecções Estreptocócicas/imunologia , Feminino , Humanos , Gravidez , Streptococcus agalactiae
14.
ACS Infect Dis ; 7(9): 2686-2696, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34076405

RESUMO

Group B Streptococcus (GBS) is an encapsulated Gram-positive pathogen that causes ascending infections of the reproductive tract during pregnancy. The capsule of this organism is a critical virulence factor that has been implicated in a variety of cellular processes to promote pathogenesis. Primarily comprised of carbohydrates, the GBS capsule and its synthesis is driven by the capsule polysaccharide synthesis (cps) operon. The cpsE gene within this operon encodes a putative glycosyltransferase that is responsible for the transfer of a Glc-1-P from UDP-Glc to an undecaprenyl lipid molecule. We hypothesized that the cpsE gene product is important for GBS virulence and ascending infection during pregnancy. Our work demonstrates that a GBS cpsE mutant secretes fewer carbohydrates, has a reduced capsule, and forms less biofilm than the wild-type parental strain. We show that, compared to the parental strain, the ΔcpsE deletion mutant is more readily taken up by human placental macrophages and has a significantly attenuated ability to invade and proliferate in the mouse reproductive tract. Taken together, these results demonstrate that the cpsE gene product is an important virulence factor that aids in GBS colonization and invasion of the gravid reproductive tract.


Assuntos
Cápsulas Bacterianas , Placenta , Animais , Biofilmes , Feminino , Camundongos , Gravidez , Sorogrupo , Streptococcus agalactiae/genética
15.
Gastroenterol Res Pract ; 2020: 2868373, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184815

RESUMO

Calgranulin proteins are an important class of molecules involved in innate immunity. These members of the S100 class of the EF-hand family of calcium-binding proteins have numerous cellular and antimicrobial functions. One protein in particular, S100A12 (also called EN-RAGE or calgranulin C), is highly abundant in neutrophils during acute inflammation and has been implicated in immune regulation. Structure-function analyses reveal that S100A12 has the capacity to bind calcium, zinc, and copper, processes that contribute to nutritional immunity against invading microbial pathogens. S100A12 is a ligand for the receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), and CD36, which promote cellular and immunological pathways to alter inflammation. We conducted a scoping review of the existing literature to define what is known about the association of S100A12 with digestive disease and health. Results suggest that S100A12 is implicated in gastroenteritis, necrotizing enterocolitis, gastritis, gastric cancer, Crohn's disease, irritable bowel syndrome, inflammatory bowel disease, and digestive tract cancers. Together, these results reveal S100A12 is an important molecule broadly associated with the pathogenesis of digestive diseases.

16.
ACS Infect Dis ; 6(7): 1615-1623, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32329605

RESUMO

Streptococcal species are Gram-positive bacteria responsible for a variety of disease outcomes including pneumonia, meningitis, endocarditis, erysipelas, necrotizing fasciitis, periodontitis, skin and soft tissue infections, chorioamnionitis, premature rupture of membranes, preterm birth, and neonatal sepsis. In response to streptococcal infections, the host innate immune system deploys a repertoire of antimicrobial and immune modulating molecules. One important molecule that is produced in response to streptococcal infections is lactoferrin. Lactoferrin has antimicrobial properties including the ability to bind iron with high affinity and sequester this important nutrient from an invading pathogen. Additionally, lactoferrin has the capacity to alter the host inflammatory response and contribute to disease outcome. This Review presents the most recent published work that studies the interaction between the host innate immune protein lactoferrin and the invading pathogen, Streptococcus.


Assuntos
Anti-Infecciosos , Nascimento Prematuro , Infecções Estreptocócicas , Feminino , Humanos , Imunidade , Recém-Nascido , Lactoferrina/metabolismo , Gravidez , Infecções Estreptocócicas/tratamento farmacológico
17.
ACS Infect Dis ; 6(12): 3131-3140, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33170652

RESUMO

Streptococcus species are common causes of human infection. These Gram-positive, encapsulated bacterial pathogens infect diverse anatomic spaces, leading to infections including skin and soft tissue infection, endocarditis, pneumonia, meningitis, sinusitis, otitis media, chorioamnionitis, sepsis, and even death. Risk for streptococcal infection is highest in low- and middle-income countries where micronutrient deficiency is common. Epidemiological data reveal that vitamin D deficiency is associated with enhanced risk of streptococcal infection and cognate disease outcomes. Additionally, vitamin D improves antibacterial defenses by stimulating innate immune processes such as phagocytosis and enhancing production of reactive oxygen species (oxidative burst) and antimicrobial peptides (including cathelicidin and lactoferrin), which are important for efficient killing of bacteria. This review presents the most recent published work that studies interactions between the micronutrient vitamin D, the host immune system, and pathogenic streptococci as well as comparisons with other relevant infection models.


Assuntos
Anti-Infecciosos , Infecções Estreptocócicas , Deficiência de Vitamina D , Vitamina D , Feminino , Humanos , Imunidade , Gravidez , Streptococcus
18.
J Biophotonics ; 12(9): e201800449, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162821

RESUMO

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a major cause of chorioamnionitis and neonatal sepsis. This study evaluates Raman spectroscopy (RS) to identify spectral characteristics of infection and differentiate GBS from Escherichia coli and Staphylococcus aureus during ex vivo infection of human fetal membrane tissues. Unique spectral features were identified from colonies grown on agar and infected fetal membrane tissues. Multinomial logistic regression analysis accurately identified GBS infected tissues with 100.0% sensitivity and 88.9% specificity. Together, these findings support further investigation into the use of RS as an emerging microbiologic diagnostic tool and intrapartum screening test for GBS carriage.


Assuntos
Antibacterianos/farmacologia , Infecções por Escherichia coli/diagnóstico por imagem , Membranas Extraembrionárias/diagnóstico por imagem , Membranas Extraembrionárias/microbiologia , Análise Espectral Raman , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estreptocócicas/diagnóstico por imagem , Ágar , Algoritmos , Corioamnionite/diagnóstico por imagem , Escherichia coli , Feminino , Humanos , Modelos Logísticos , Técnicas Microbiológicas , Gravidez , Análise de Regressão , Staphylococcus aureus , Streptococcus agalactiae
19.
J Innate Immun ; 10(1): 3-13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28988241

RESUMO

Tissue macrophages are derived from either circulating blood monocytes that originate in the bone marrow, or embryonic precursors that establish residence in tissues and are maintained independent of bone marrow progenitors. Macrophages perform diverse functions including tissue repair, the maintenance of homeostasis, and immune regulation. Recent studies have demonstrated that macrophages produce extracellular traps (ETs). ETs are an immune response by which a cell undergoes "ETosis" to release net-like material, with strands composed of cellular DNA that is studded with histones and cellular proteins. ETs are thought to immobilize and kill microorganisms, but also been implicated in disease pathology including aseptic inflammation and autoimmune disease. We conducted a scoping review to define what is known from the existing literature about the ETs produced by monocytes or macrophages. The results suggest that macrophage ETs (METs) are produced in response to various microorganisms and have similar features to neutrophil ETs (NETs), in that METs are produced by a unique cell death program (METosis), which results in release of fibers composed of DNA and studded with cellular proteins. METs function to immobilize and kill some microorganisms, but may also play a role in disease pathology.


Assuntos
Doenças Autoimunes/imunologia , Armadilhas Extracelulares/imunologia , Infecções/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Morte Celular , DNA/metabolismo , Histonas/metabolismo , Homeostase , Humanos , Imunidade Inata , Neutrófilos/imunologia
20.
mBio ; 9(6)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459195

RESUMO

Streptococcus agalactiae, or group B Streptococcus (GBS), is a common perinatal pathogen. GBS colonization of the vaginal mucosa during pregnancy is a risk factor for invasive infection of the fetal membranes (chorioamnionitis) and its consequences such as membrane rupture, preterm labor, stillbirth, and neonatal sepsis. Placental macrophages, or Hofbauer cells, are fetally derived macrophages present within placental and fetal membrane tissues that perform vital functions for fetal and placental development, including supporting angiogenesis, tissue remodeling, and regulation of maternal-fetal tolerance. Although placental macrophages as tissue-resident innate phagocytes are likely to engage invasive bacteria such as GBS, there is limited information regarding how these cells respond to bacterial infection. Here, we demonstrate in vitro that placental macrophages release macrophage extracellular traps (METs) in response to bacterial infection. Placental macrophage METs contain proteins, including histones, myeloperoxidase, and neutrophil elastase similar to neutrophil extracellular traps, and are capable of killing GBS cells. MET release from these cells occurs by a process that depends on the production of reactive oxygen species. Placental macrophage METs also contain matrix metalloproteases that are released in response to GBS and could contribute to fetal membrane weakening during infection. MET structures were identified within human fetal membrane tissues infected ex vivo, suggesting that placental macrophages release METs in response to bacterial infection during chorioamnionitis.IMPORTANCEStreptococcus agalactiae, also known as group B Streptococcus (GBS), is a common pathogen during pregnancy where infection can result in chorioamnionitis, preterm premature rupture of membranes (PPROM), preterm labor, stillbirth, and neonatal sepsis. Mechanisms by which GBS infection results in adverse pregnancy outcomes are still incompletely understood. This study evaluated interactions between GBS and placental macrophages. The data demonstrate that in response to infection, placental macrophages release extracellular traps capable of killing GBS. Additionally, this work establishes that proteins associated with extracellular trap fibers include several matrix metalloproteinases that have been associated with chorioamnionitis. In the context of pregnancy, placental macrophage responses to bacterial infection might have beneficial and adverse consequences, including protective effects against bacterial invasion, but they may also release important mediators of membrane breakdown that could contribute to membrane rupture or preterm labor.


Assuntos
Corioamnionite/imunologia , Armadilhas Extracelulares/microbiologia , Macrófagos/microbiologia , Placenta/citologia , Explosão Respiratória , Streptococcus agalactiae/imunologia , Corioamnionite/microbiologia , Armadilhas Extracelulares/imunologia , Feminino , Ruptura Prematura de Membranas Fetais/microbiologia , Humanos , Macrófagos/enzimologia , Metaloproteinases da Matriz , Placenta/imunologia , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA