Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Bioorg Med Chem Lett ; 49: 128314, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34391891

RESUMO

A series of IDO1 inhibitors containing a decahydroquinoline, decahydro-1,6-naphthyridine, or octahydro-1H-pyrrolo[3,2-c]pyridine scaffold were identified with good cellular and human whole blood activity against IDO1. These inhibitors contain multiple chiral centers and all diastereomers were separated. The absolute stereochemistry of each isomers were not determined. Compounds 15 and 27 stood out as leads due to their good cellular as well as human whole blood IDO1 inhibition activity, low unbound clearance, and reasonable mean residence time in rat cassette PK studies.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Naftiridinas/farmacologia , Pirróis/farmacologia , Quinolinas/farmacologia , Animais , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Simulação de Acoplamento Molecular , Naftiridinas/síntese química , Naftiridinas/metabolismo , Naftiridinas/farmacocinética , Pirróis/síntese química , Pirróis/metabolismo , Pirróis/farmacocinética , Quinolinas/síntese química , Quinolinas/metabolismo , Quinolinas/farmacocinética , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
2.
Bioorg Med Chem Lett ; 47: 128214, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166782

RESUMO

A novel series of IDO1 inhibitors have been identified with good IDO1 Hela cell and human whole blood activity. These inhibitors contain an indoline or a 3-azaindoline scaffold. Their structure-activity-relationship studies have been explored. Compounds 37 and 41 stood out as leads due to their good potency in IDO1 Hela assay, good IDO1 unbound hWB IC50s, reasonable unbound clearance, and good MRT in rat and dog PK studies.


Assuntos
Compostos Aza/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indóis/farmacologia , Animais , Compostos Aza/síntese química , Compostos Aza/química , Cães , Relação Dose-Resposta a Droga , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indóis/síntese química , Indóis/química , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade
3.
ACS Med Chem Lett ; 12(3): 389-396, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33738066

RESUMO

Indoleamine-2,3-dioxygenase-1 (IDO1) has emerged as an attractive target for cancer immunotherapy. An automated ligand identification system screen afforded the tetrahydroquinoline class of novel IDO1 inhibitors. Potency and pharmacokinetic (PK) were key issues with this class of compounds. Structure-based drug design and strategic incorporation of polarity enabled the rapid improvement on potency, solubility, and oxidative metabolic stability. Metabolite identification studies revealed that amide hydrolysis in the D-pocket was the key clearance mechanism for this class. Strategic survey of amide isosteres revealed that carbamates and N-pyrimidines, which maintained exquisite potencies, mitigated the amide hydrolysis issue and led to an improved rat PK profile. The lead compound 28 is a potent IDO1 inhibitor, with clean off-target profiles and the potential for quaque die dosing in humans.

4.
J Pharm Sci ; 109(9): 2798-2811, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32534030

RESUMO

In pharmaceutical development alternative drug delivery modalities are being increasingly employed. One example is an implant, which achieves gradual drug release in patients over a period of many months or years. Due to the complexity of these long-acting formulations, advanced physical characterization methods are desirable as screening tools during protracted formulation development. Imaging methods are of particular interest due to their ability to interrogate the structure and composition of implants spatially across multiple length scales (macro, micro, nano). In this work, spatiochemical imaging is shown to interrogate many crucial drug product attributes of solid implants: overall implant structure, drug distribution, micro-domain size and orientation, agglomeration, porosity and defects, drug/excipient interface, dissolution process, and release mechanism. Imaging methods facilitate a detailed understanding of the process/structure correlation to inform on formulation selection, process parameter optimization, and batch consistency. Numerous case studies of implant applications with imaging are discussed. Methods utilized are X-ray computed tomography (XRCT), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) imaging, and Raman microscopy. The imaging data is complemented with solid-state nuclear magnetic resonance (ssNMR). Altogether, these examples demonstrate that complementary imaging methods are highly effective for analyzing complex and novel pharmaceutical modalities such as solid implants.


Assuntos
Preparações Farmacêuticas , Liberação Controlada de Fármacos , Humanos , Microscopia Eletrônica de Varredura , Próteses e Implantes , Espectrometria por Raios X
5.
ACS Med Chem Lett ; 11(8): 1548-1554, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32832022

RESUMO

Indoleamine-2,3-dioxygenase 1 (IDO1) inhibition and its combination with immune checkpoint inhibitors like pembrolizumab have drawn considerable attention from both academia and the pharmaceutical industry. Here, we describe the discovery of a novel class of highly potent IDO1 heme-displacing inhibitors featuring a unique bicyclo[1.1.1]pentane motif. Compound 1, evolving from an ALIS (automated ligand identification system) hit, exhibited excellent potency but lacked the desired pharmacokinetic profile due to extensive amide hydrolysis of the benzamide moiety. Replacing the central phenyl ring in 1 with a bicyclo[1.1.1]pentane bioisostere effectively circumvented the amide hydrolysis issue, resulting in the discovery of compound 2 with a favorable overall profile such as excellent potency, selectivity, pharmacokinetics, and a low predicted human dose.

6.
ACS Med Chem Lett ; 10(11): 1530-1536, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31749906

RESUMO

Checkpoint inhibitors have demonstrated unprecedented efficacy and are evolving to become standard of care for certain types of cancers. However, low overall response rates often hamper the broad utility and potential of these breakthrough therapies. Combination therapy strategies are currently under intensive investigation in the clinic, including the combination of PD-1/PD-L1 agents with IDO1 inhibitors. Here, we report the discovery of a class of IDO1 heme-binding inhibitors featuring a unique amino-cyclobutarene motif, which was discovered through SBDD from a known and weakly active inhibitor. Subsequent optimization efforts focused on improving metabolic stability and were greatly accelerated by utilizing a robust SNAr reaction of a facile nitro-furazan intermediate to quickly explore different polar side chains. As a culmination of these efforts, compound 16 was identified and demonstrated a favorable overall profile with superior potency and selectivity. Extensive studies confirmed the chemical stability and drug-like properties of compound 16, rendering it a potential drug candidate.

7.
J Control Release ; 256: 19-25, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28342981

RESUMO

Little is known about the underlying effects controlling in vitro-in vivo correlations (IVIVCs) for biodegradable controlled release microspheres. Most reports of IVIVCs that exist are empirical in nature, typically based on a mathematical relationship between in vitro and in vivo drug release, with the latter often estimated by deconvolution of pharmacokinetic data. In order to improve the ability of in vitro release tests to predict microsphere behavior in vivo and develop more meaningful IVIVCs, the in vivo release mechanisms need to be characterized. Here, two poly(lactic-co-glycolic acid) (PLGA) microsphere formulations encapsulating the model steroid triamcinolone acetonide (Tr-A) were implanted subcutaneously in rats by using a validated cage model, allowing for free fluid and cellular exchange and microsphere retrieval during release. Release kinetics, as well as mechanistic indicators of release such as hydrolysis and mass loss, was measured by direct analysis of the recovered microspheres. Release of Tr-A from both formulations was greatly accelerated in vivo compared to in vitro using agitated phosphate buffered saline +0.02% Tween 80 pH7.4, including rate of PLGA hydrolysis, mass loss and water uptake. Both microsphere formulations exhibited erosion-controlled release in vitro, indicated by similar polymer mass loss kinetics, but only one of the formulations (low molecular weight, free acid terminated) exhibited the same mechanism in vivo. The in vivo release of Tr-A from microspheres made of a higher molecular weight, ester end-capped PLGA displayed an osmotically induced/pore diffusion mechanism based on confocal micrographs of percolating pores in the polymer, not previously observed in vitro. This research indicates the need to fully understand the in vivo environment and how it causes drug release from biodegradable microspheres. This understanding can then be applied to develop in vitro release tests which better mimic this environment and cause drug release by the relevant mechanistic processes, ultimately leading to the development of mechanism based IVIVCs.


Assuntos
Ácido Láctico , Microesferas , Ácido Poliglicólico , Triancinolona Acetonida , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Liberação Controlada de Fármacos , Glucocorticoides/administração & dosagem , Glucocorticoides/química , Glucocorticoides/farmacocinética , Ácido Láctico/administração & dosagem , Ácido Láctico/química , Ácido Láctico/farmacocinética , Masculino , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Triancinolona Acetonida/administração & dosagem , Triancinolona Acetonida/química , Triancinolona Acetonida/farmacocinética
8.
Eur J Pharm Biopharm ; 113: 24-33, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27865933

RESUMO

In vitro tests for controlled release PLGA microspheres in their current state often do not accurately predict in vivo performance of these products during formulation development. Here, we introduce a new mechanistic and multi-phase approach to more clearly understand in vitro-in vivo relationships, and describe the first "in vitro phase" with the model drug, triamcinolone acetonide (Tr-A). Two microsphere formulations encapsulating Tr-A were prepared from PLGAs of different molecular weights and end-capping (18kDa acid-capped and 54kDa ester-capped). In vitro release kinetics and the evidence for controlling mechanisms (i.e., erosion, diffusion, and water-mediated processes) were studied in four release media: PBST pH 7.4 (standard condition), PBST pH 6.5, PBS+1.0% triethyl citrate (TC), and HBST pH 7.4. The release mechanism in PBST was primarily polymer erosion-controlled as indicated by the similarity of release and mass loss kinetics. Release from the low MW PLGA was accelerated at low pH due to increased rate of hydrolysis and in the presence of the plasticizer TC due to slightly increased hydrolysis and much higher diffusion in the polymer matrix. TC also increased release from the high MW PLGA due to increased hydrolysis, erosion, and diffusion. This work demonstrates how in vitro conditions can be manipulated to change not only rates of drug release from PLGA microspheres but also the mechanism(s) by which release occurs. Follow-on studies in the next phases of this approach will utilize these results to compare the mechanistic data of the Tr-A/PLGA microsphere formulations developed here after recovery of microspheres in vivo. This new approach based on measuring mechanistic indicators of release in vitro and in vivo has the potential to design better, more predictive in vitro release tests for these formulations and potentially lead to mechanism-based in vitro-in vivo correlations.


Assuntos
Portadores de Fármacos , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Triancinolona Acetonida/administração & dosagem , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Triancinolona Acetonida/farmacocinética
9.
J Control Release ; 244(Pt B): 302-313, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27565212

RESUMO

Release testing of parental controlled release microspheres is an essential step in controlling quality and predicting the duration of efficacy. In the first of a two-part study, we examined the effect of various incubation media on release from leuprolide-loaded PLGA microspheres to understand the influence of external pH, plasticization, and buffer type on mechanism of accelerated release. PLGA 50/50 microspheres encapsulating ~5% w/w leuprolide were prepared by the double emulsion-solvent evaporation method with or without gelatin or by the self-healing encapsulation method. The microspheres were incubated at 37°C up to 56days in various media: pH5.5, 6.5, and 7.4 phosphate buffered-saline (PBS) containing 0.02% Tween 80; pH7.4 PBS containing 1.0% triethyl citrate (PBStc); and pH7.4 HEPES buffered-saline containing 0.02% Tween 80 (all media contained 0.02% sodium azide). The recovered release media and microspheres were examined for released drug, polymer molecular weight (Mw), water uptake, mass loss, and BODIPY (green-fluorescent dye) diffusion coefficient in PLGA. After the initial burst release, release of leuprolide from acid-capped PLGA microspheres appeared to be controlled initially by erosion and then by a second mechanism after day 21, which likely consists of a combination of peptide desorption and/or water-mediated breakage of pore connections. PBStc and acidic buffers accelerated degradation of PLGA and pore-network development and increased BODIPY diffusion coefficient, resulting in faster release. Release of leuprolide from the end-capped PLGA showed similar trends as found with acid capped PLGA but with a longer lag time before release. These data provide a baseline mechanistic signature of in vitro release of leuprolide for future comparison with corresponding in vivo performance, and in turn could lead to future development of rational in vitro-in vivo correlations.


Assuntos
Ácido Láctico/química , Leuprolida/química , Microesferas , Ácido Poliglicólico/química , Compostos de Boro/química , Liberação Controlada de Fármacos , Peso Molecular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Temperatura de Transição
10.
Biomaterials ; 109: 88-96, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693924

RESUMO

Here we describe development of a silicone rubber/stainless steel mesh cage implant system, much like that used to assess biocompatibility of biomaterials [1], for easy removal of injectable polymer microspheres in vivo. The sterile cage has a type 316 stainless steel mesh size (38 µm) large enough for cell penetration and free fluid flow in vivo but small enough for microsphere retention, and a silicone rubber shell for injection of the microspheres. Two model drugs, the poorly soluble steroid, triamcinolone acetonide, and the highly water-soluble luteinizing hormone-releasing hormone (LHRH) peptide superagonist, leuprolide, were encapsulated in PLGA microspheres large enough (63-90 µm) to be restrained by the cage implant in vivo. The in vitro release from both formulations was followed by ultra-performance liquid chromatography (UPLC) with and without the cage in a standard release media, PBS pH 7.4 + 0.02% Tween 80 + 0.05% sodium azide, at 37 °C. Pharmacokinetics (PK) in rats was assessed after SC injection or SC in-cage implantation of microspheres with plasma analysis by LC-MS/MS or EIA. Tr-A and leuprolide in vitro release was largely unaffected after the initial burst irrespective of the cage or test tube incubation vessel and release was much slower than observed in vivo for both drugs. Moreover, Tr-A and leuprolide pharmacokinetics with and without the cage were highly similar during the 2-3 week release duration before a significant inflammatory response was caused by the cage implant. Hence, the PK-validated cage implant provides a simple means to recover and evaluate the microsphere drug carriers in vivo during a time window of at least a few weeks in order to characterize the polymer microsphere release and erosion behavior in vivo. This approach may facilitate development of mechanism-based in vitro/in vivo correlations and enable development of more accurate and useful in vitro release tests.


Assuntos
Ácido Láctico/química , Ácido Poliglicólico/química , Aço Inoxidável/química , Animais , Materiais Biocompatíveis/química , Química Farmacêutica , Preparações de Ação Retardada , Portadores de Fármacos , Liberação Controlada de Fármacos , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/química , Humanos , Injeções Subcutâneas , Cinética , Leuprolida/química , Leuprolida/farmacocinética , Masculino , Microesferas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Silício , Solubilidade , Triancinolona Acetonida/química , Triancinolona Acetonida/farmacocinética , Água/química
11.
Chem Phys Lipids ; 165(1): 15-22, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22024173

RESUMO

Liposomes consisted of phosphatidylinositol (PI) and phosphatidylcholine (PC) have been utilized as delivery vehicle for drugs and proteins. In the present work, we studied the effect of soy PI on physical properties of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes such as phase state of lipid bilayer, lipid packing and phase properties using multiple orthogonal biophysical techniques. The 6-dodecanoyl-2-dimethylamino naphthalene (Laurdan) fluorescence studies showed that presence of PI induces the formation of fluid phases in DMPC. Differential scanning calorimetry (DSC), temperature dependent fluorescence anisotropy measurements, and generalized polarization values for Laurdan showed that the presence of as low as 10mol% of PI induces substantial broadening and shift to lower temperature of phase transition of DMPC. The fluorescence emission intensity of DPH labeled, PI containing DMPC lipid bilayer decreased possibly due to deeper penetration of water molecules in lipid bilayer. In order to further delineate the effect of PI on the physico chemical properties of DMPC is due to either significant hydrophobic mismatch between the acyl chains of the DMPC and that of soy PI or due to the inositol head group, we systematically replaced soy PI with PC species of similar acyl chain composition (DPPC and 18:2 (Cis) PC) or with diacylglycerol (DAG), respectively. The anisotropy of PC membrane containing soy PI showed largest fluidity change compared to other compositions. The data suggests that addition of PI alters structure and dynamics of DMPC bilayer in that it promotes deeper water penetration in the bilayer, induces fluid phase characteristics and causes lipid packing defects that involve its inositol head group.


Assuntos
Fosfatidilcolinas/química , Fosfatidilinositóis/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Varredura Diferencial de Calorimetria , Dimiristoilfosfatidilcolina/química , Lauratos/química , Bicamadas Lipídicas/química , Lipossomos/química , Modelos Moleculares , Transição de Fase , Espectrometria de Fluorescência , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA