Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054941

RESUMO

Clostridium botulinum produces the botulinum neurotoxin that causes botulism, a rare but potentially lethal paralysis. Endospores play an important role in the survival, transmission, and pathogenesis of C. botulinum. C. botulinum strains are very diverse, both genetically and ecologically. Group I strains are terrestrial, mesophilic, and produce highly heat-resistant spores, while Group II strains can be terrestrial (type B) or aquatic (type E) and are generally psychrotrophic and produce spores of moderate heat resistance. Group III strains are either terrestrial or aquatic, mesophilic or slightly thermophilic, and the heat resistance properties of their spores are poorly characterized. Here, we analyzed the sporulation dynamics in population, spore morphology, and other spore properties of 10 C. botulinum strains belonging to Groups I-III. We propose two distinct sporulation strategies used by C. botulinum Groups I-III strains, report their spore properties, and suggest a putative role for the exosporium in conferring high heat resistance. Strains within each physiological group produced spores with similar characteristics, likely reflecting adaptation to respective environmental habitats. Our work provides new information on the spores and on the population and single-cell level strategies in the sporulation of C. botulinum.


Assuntos
Botulismo/microbiologia , Extensões da Superfície Celular/fisiologia , Clostridium botulinum/fisiologia , Viabilidade Microbiana , Esporos Bacterianos/fisiologia , Extensões da Superfície Celular/ultraestrutura , Clostridium botulinum/ultraestrutura , Esporos Bacterianos/ultraestrutura
2.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955526

RESUMO

Clostridium botulinum is a notorious pathogen that raises health and food safety concerns by producing the potent botulinum neurotoxin and causing botulism, a potentially fatal neuroparalytic disease in humans and animals. Efficient methods for the identification and isolation of C. botulinum are warranted for laboratory diagnostics of botulism and for food safety risk assessment. The cell wall binding domains (CBD) of phage lysins are recognized by their high specificity and affinity to distinct types of bacteria, which makes them promising for the development of diagnostic tools. We previously identified CBO1751, which is the first antibotulinal phage lysin showing a lytic activity against C. botulinum Group I. In this work, we assessed the host specificity of the CBD of CBO1751 and tested its feasibility as a probe for the specific isolation of C. botulinum Group I strains. We show that the CBO1751 CBD specifically binds to C. botulinum Group I sensu lato (including C. sporogenes) strains. We also demonstrate that some C. botulinum Group I strains possess an S-layer, the disruption of which by an acid glycine treatment is required for efficient binding of the CBO1751 CBD to the cells of these strains. We further developed CBO1751 CBD-based methods using flow cytometry and magnetic separation to specifically isolate viable cells of C. botulinum Group I. These methods present potential for applications in diagnostics and risk assessment in order to control the botulism hazard.


Assuntos
Bacteriófagos , Toxinas Botulínicas , Botulismo , Clostridium botulinum , Animais , Toxinas Botulínicas/metabolismo , Parede Celular , Humanos , N-Acetil-Muramil-L-Alanina Amidase/metabolismo
3.
Appl Microbiol Biotechnol ; 105(3): 1123-1131, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33417041

RESUMO

Many studies have established the functional properties of Lacticaseibacillus rhamnosus GG, previously known as Lactobacillus rhamnosus GG, marketed worldwide as a probiotic. The extraordinary capacity of L. rhamnosus GG to bind to human mucus and influence the immune system especially stand out. Earlier, we have shown the key role of its SpaCBA sortase-dependent pili encoded by the spaCBA-srtC1 gene cluster herein. These heterotrimeric pili consist of a shaft pilin SpaA, a basal pilin SpaB, and tip pilin SpaC that contains a mucus-binding domain. Here, we set out to characterize a food-grade non-GMO mutant of L. rhamnosus GG, strain PA11, which secretes its pilins, rather than coupling them to the cell surface, due to a defect in the housekeeping sortase A. The sortase-negative strain PA11 was extensively characterized using functional genomics and biochemical approaches and found to secrete the SpaCBA pili into the supernatant. Given the functional importance and uniqueness of the mucus-binding pili of L. rhamnosus GG, strain PA11 offers novel opportunities towards the characterization and further therapeutic application of SpaCBA pili and their low-cost, large-scale production. KEY POINTS: •Creation of pilus-secreting mutant (PA11) of the key probiotic LGG. •Strain PA11 is defective in a functional housekeeping sortase SrtA. •Strain PA11 opens novel biotherapeutic application avenues. Graphical abstract.


Assuntos
Lacticaseibacillus rhamnosus , Probióticos , Proteínas de Bactérias/genética , Proteínas de Fímbrias , Fímbrias Bacterianas/genética , Humanos , Lacticaseibacillus rhamnosus/genética , Muco
4.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27815279

RESUMO

The draft genomes of Lactobacillus plantarum strains isolated from Asian fermented foods, infant feces, and shrimp intestines were sequenced and compared to those of well-studied strains. Among 28 strains of L. plantarum, variations in the genomic features involved in ecological adaptation were elucidated. The genome sizes ranged from approximately 3.1 to 3.5 Mb, of which about 2,932 to 3,345 protein-coding sequences (CDS) were predicted. The food-derived isolates contained a higher number of carbohydrate metabolism-associated genes than those from infant feces. This observation correlated to their phenotypic carbohydrate metabolic profile, indicating their ability to metabolize the largest range of sugars. Surprisingly, two strains (P14 and P76) isolated from fermented fish utilized inulin. ß-Fructosidase, the inulin-degrading enzyme, was detected in the supernatants and cell wall extracts of both strains. No activity was observed in the cytoplasmic fraction, indicating that this key enzyme was either membrane-bound or extracellularly secreted. From genomic mining analysis, a predicted inulin operon of fosRABCDXE, which encodes ß-fructosidase and many fructose transporting proteins, was found within the genomes of strains P14 and P76. Moreover, pts1BCA genes, encoding sucrose-specific IIBCA components involved in sucrose transport, were also identified. The proteomic analysis revealed the mechanism and functional characteristic of the fosRABCDXE operon involved in the inulin utilization of L. plantarum The expression levels of the fos operon and pst genes were upregulated at mid-log phase. FosE and the LPXTG-motif cell wall anchored ß-fructosidase were induced to a high abundance when inulin was present as a carbon source. IMPORTANCE: Inulin is a long-chain carbohydrate that may act as a prebiotic, which provides many health benefits to the host by selectively stimulating the growth and activity of beneficial bacteria in the colon. While certain lactobacilli can catabolize inulin, this has not yet been described for Lactobacillus plantarum, and an associated putative inulin operon has not been reported in this species. By using comparative and functional genomics, we showed that two L. plantarum strains utilized inulin and identified functional inulin operons in their genomes. The proteogenomic data revealed that inulin degradation and uptake routes, which related to the fosRABCDXE operon and pstBCA genes, were widely expressed among L. plantarum strains. The present work provides a novel understanding of gene regulation and mechanisms of inulin utilization in probiotic L. plantarum generating opportunities for synbiotic product development.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Inulina/metabolismo , Lactobacillus plantarum/genética , Óperon , Proteínas de Bactérias/metabolismo , Lactobacillus plantarum/metabolismo , Metaboloma , Proteogenômica
5.
Appl Environ Microbiol ; 82(19): 5756-62, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422834

RESUMO

UNLABELLED: Vancomycin-resistant enterococci (VRE) have become a major nosocomial threat. Enterococcus faecium is of special concern, as it can easily acquire new antibiotic resistances and is an excellent colonizer of the human intestinal tract. Several clinical studies have explored the potential use of beneficial bacteria to weed out opportunistic pathogens. Specifically, the widely studied Lactobacillus rhamnosus strain GG has been applied successfully in the context of VRE infections. Here, we provide new insight into the molecular mechanism underlying the effects of this model probiotic on VRE decolonization. Both clinical VRE isolates and L. rhamnosus GG express pili on their cell walls, which are the key modulators of their highly efficient colonization of the intestinal mucosa. We found that one of the VRE pilus clusters shares considerable sequence similarity with the SpaCBA-SrtC1 pilus cluster of L. rhamnosus GG. Remarkable immunological and functional similarities were discovered between the mucus-binding pili of L. rhamnosus GG and those of the clinical E. faecium strain E1165, which was characterized at the genome level. Moreover, E. faecium strain E1165 bound efficiently to mucus, which may be prevented by the presence of the mucus-binding SpaC protein or antibodies against L. rhamnosus GG or SpaC. These results present experimental support for a novel probiotic mechanism, in which the mucus-binding pili of L. rhamnosus GG prevent the binding of a potential pathogen to the host. Hence, we provide a molecular basis for the further exploitation of L. rhamnosus GG and its pilins for prophylaxis and treatment of VRE infections. IMPORTANCE: Concern about vancomycin-resistant Enterococcus faecium causing nosocomial infections is rising globally. The arsenal of antibiotic strategies to treat these infections is nearly exhausted, and hence, new treatment strategies are urgently needed. Here, we provide molecular evidence to underpin reports of the successful clinical application of Lactobacillus rhamnosus GG in VRE decolonization strategies. Our results provide support for a new molecular mechanism, in which probiotics can perform competitive exclusion and possibly immune interaction. Moreover, we spur further exploration of the potential of intact L. rhamnosus GG and purified SpaC pilin as prophylactic and curative agents of the VRE carrier state.


Assuntos
Enterococcus faecium/fisiologia , Fímbrias Bacterianas/metabolismo , Lacticaseibacillus rhamnosus/fisiologia , Interações Microbianas , Muco/microbiologia , Probióticos/metabolismo , Humanos
6.
Appl Environ Microbiol ; 82(13): 3783-92, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084020

RESUMO

UNLABELLED: Lactobacillus rhamnosus GG is a lactic acid bacterium widely marketed by the food industry. Its genomic analysis led to the identification of a gene cluster encoding mucus-binding SpaCBA pili, which is located in a genomic island enriched in insertion sequence (IS) elements. In the present study, we analyzed by genome-wide resequencing the genomic integrity of L. rhamnosus GG in four distinct evolutionary experiments conducted for approximately 1,000 generations under conditions of no stress or salt, bile, and repetitive-shearing stress. Under both stress-free and salt-induced stress conditions, the GG population (excluding the mutator lineage in the stress-free series [see below]) accumulated only a few single nucleotide polymorphisms (SNPs) and no frequent chromosomal rearrangements. In contrast, in the presence of bile salts or repetitive shearing stress, some IS elements were found to be activated, resulting in the deletion of large chromosomal segments that include the spaCBA-srtC1 pilus gene cluster. Remarkably, a high number of SNPs were found in three strains obtained after 900 generations of stress-free growth. Detailed analysis showed that these three strains derived from a founder mutant with an altered DNA polymerase subunit that resulted in a mutator phenotype. The present work confirms the stability of the pilus production phenotype in L. rhamnosus GG under stress-free conditions, highlights the possible evolutionary scenarios that may occur when this probiotic strain is extensively cultured, and identifies external factors that affect the chromosomal integrity of GG. The results provide mechanistic insights into the stability of GG in regard to its extensive use in probiotic and other functional food products. IMPORTANCE: Lactobacillus rhamnosus GG is a widely marketed probiotic strain that has been used in numerous clinical studies to assess its health-promoting properties. Hence, the stability of the probiotic functions of L. rhamnosus GG is of importance, and here we studied the impact of external stresses on the genomic integrity of L. rhamnosus GG. We studied three different stresses that are relevant for understanding its robustness and integrity under both ex vivo conditions, i.e., industrial manufacturing conditions, and in vivo conditions, i.e., intestinal tract-associated stress. Overall, our findings contribute to predicting the genomic stability of L. rhamnosus GG and its ecological performance.


Assuntos
Rearranjo Gênico , Instabilidade Genômica , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Lacticaseibacillus rhamnosus/genética , Mutação , Polimorfismo Genético , Probióticos , Elementos de DNA Transponíveis , Fenótipo , Recombinação Genética
7.
Mol Cell Proteomics ; 13(10): 2558-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24965555

RESUMO

Bifidobacteria are natural inhabitants of the human gastrointestinal tract and well known for their health-promoting effects. Tolerance to bile stress is crucial for bifidobacteria to survive in the colon and to exert their beneficial actions. In this work, RNA-Seq transcriptomic analysis complemented with proteomic analysis was used to investigate the cellular response to bile in Bifidobacterium longum BBMN68. The transcript levels of 236 genes were significantly changed (≥ threefold, p < 0.001) and 44 proteins were differentially abundant (≥1.6-fold, p < 0.01) in B. longum BBMN68 when exposed to 0.75 g l(-1) ox-bile. The hemolysin-like protein and bile efflux systems were significantly over produced, which might prevent bile adsorption and exclude bile, respectively. The cell membrane composition was modified probably by an increase of cyclopropane fatty acid and a decrease of transmembrane proteins, resulting in a cell membrane more impermeable to bile salts. Our hypothesis was later confirmed by surface hydrophobicity assay. The transcription of genes related to xylose utilization and bifid shunt were up-regulated, which increased the production of ATP and reducing equivalents to cope with bile-induced damages in a xylan-rich colon environment. Bile salts signal the B. longum BBMN68 to gut entrance and enhance the expression of esterase and sortase associated with adhesion and colonization in intestinal tract, which was supported by a fivefold increased adhesion ability to HT-29 cells by BBMN68 upon bile exposure. Notably, bacterial one-hybrid and EMSA assay revealed that the two-component system senX3-regX3 controlled the expression of pstS in bifidobacteria and the role of this target gene in bile resistance was further verified by heterologous expression in Lactococcus lactis. Taken altogether, this study established a model for global response mechanisms in B. longum to bile.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Ácidos e Sais Biliares/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Idoso de 80 Anos ou mais , Aderência Bacteriana , Bifidobacterium/genética , Bifidobacterium/metabolismo , Perfilação da Expressão Gênica/métodos , Células HT29 , Humanos , Dados de Sequência Molecular , Probióticos/análise , Proteômica/métodos , Estresse Fisiológico
8.
PLoS Genet ; 9(8): e1003683, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23966868

RESUMO

Lactobacillus rhamnosus is a lactic acid bacterium that is found in a large variety of ecological habitats, including artisanal and industrial dairy products, the oral cavity, intestinal tract or vagina. To gain insights into the genetic complexity and ecological versatility of the species L. rhamnosus, we examined the genomes and phenotypes of 100 L. rhamnosus strains isolated from diverse sources. The genomes of 100 L. rhamnosus strains were mapped onto the L. rhamnosus GG reference genome. These strains were phenotypically characterized for a wide range of metabolic, antagonistic, signalling and functional properties. Phylogenomic analysis showed multiple groupings of the species that could partly be associated with their ecological niches. We identified 17 highly variable regions that encode functions related to lifestyle, i.e. carbohydrate transport and metabolism, production of mucus-binding pili, bile salt resistance, prophages and CRISPR adaptive immunity. Integration of the phenotypic and genomic data revealed that some L. rhamnosus strains possibly resided in multiple niches, illustrating the dynamics of bacterial habitats. The present study showed two distinctive geno-phenotypes in the L. rhamnosus species. The geno-phenotype A suggests an adaptation to stable nutrient-rich niches, i.e. milk-derivative products, reflected by the alteration or loss of biological functions associated with antimicrobial activity spectrum, stress resistance, adaptability and fitness to a distinctive range of habitats. In contrast, the geno-phenotype B displays adequate traits to a variable environment, such as the intestinal tract, in terms of nutrient resources, bacterial population density and host effects.


Assuntos
Genoma Bacteriano , Lacticaseibacillus rhamnosus/genética , Filogenia , Animais , Estudos de Associação Genética , Genômica , Lacticaseibacillus rhamnosus/classificação , Leite/microbiologia , Fenótipo , Densidade Demográfica
9.
J Biol Chem ; 289(22): 15764-75, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24753244

RESUMO

In Gram-positive bacteria, sortase-dependent pili mediate the adhesion of bacteria to host epithelial cells and play a pivotal role in colonization, host signaling, and biofilm formation. Lactobacillus rhamnosus strain GG, a well known probiotic bacterium, also displays on its cell surface mucus-binding pilus structures, along with other LPXTG surface proteins, which are processed by sortases upon specific recognition of a highly conserved LPXTG motif. Bioinformatic analysis of all predicted LPXTG proteins encoded by the L. rhamnosus GG genome revealed a remarkable conservation of glycine residues juxtaposed to the canonical LPXTG motif. Here, we investigated and defined the role of this so-called triple glycine (TG) motif in determining sortase specificity during the pilus assembly and anchoring. Mutagenesis of the TG motif resulted in a lack or an alteration of the L. rhamnosus GG pilus structures, indicating that the TG motif is critical in pilus assembly and that they govern the pilin-specific and housekeeping sortase specificity. This allowed us to propose a regulatory model of the L. rhamnosus GG pilus biogenesis. Remarkably, the TG motif was identified in multiple pilus gene clusters of other Gram-positive bacteria, suggesting that similar signaling mechanisms occur in other, mainly pathogenic, species.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/enzimologia , Lacticaseibacillus rhamnosus/enzimologia , Aminoaciltransferases/genética , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Ativação Enzimática/fisiologia , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/ultraestrutura , Glicina/genética , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/ultraestrutura , Microscopia Eletrônica de Transmissão , Mutagênese Sítio-Dirigida , Probióticos , Transdução de Sinais/fisiologia , Especificidade por Substrato
10.
Microb Cell Fact ; 14: 195, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26643044

RESUMO

BACKGROUND: The lactic acid bacterium Lactobacillus rhamnosus GG is the most studied probiotic bacterium with proven health benefits upon oral intake, including the alleviation of diarrhea. The mission of the Yoba for Life foundation is to provide impoverished communities in Africa increased access to Lactobacillus rhamnosus GG under the name Lactobacillus rhamnosus yoba 2012, world's first generic probiotic strain. We have been able to overcome the strain's limitations to grow in food matrices like milk, by formulating a dried starter consortium with Streptococcus thermophilus that enables the propagation of both strains in milk and other food matrices. The affordable seed culture is used by people in resource-poor communities. RESULTS: We used S. thermophilus C106 as an adjuvant culture for the propagation of L. rhamnosus yoba 2012 in a variety of fermented foods up to concentrations, because of its endogenous proteolytic activity, ability to degrade lactose and other synergistic effects. Subsequently, L. rhamnosus could reach final titers of 1E+09 CFU ml(-1), which is sufficient to comply with the recommended daily dose for probiotics. The specific metabolic interactions between the two strains were derived from the full genome sequences of L. rhamnosus GG and S. thermophilus C106. The piliation of the L. rhamnosus yoba 2012, required for epithelial adhesion and inflammatory signaling in the human host, was stable during growth in milk for two rounds of fermentation. Sachets prepared with the two strains, yoba 2012 and C106, retained viability for at least 2 years. CONCLUSIONS: A stable dried seed culture has been developed which facilitates local and low-cost production of a wide range of fermented foods that subsequently act as delivery vehicles for beneficial bacteria to communities in east Africa.


Assuntos
Alimento Funcional/microbiologia , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Streptococcus thermophilus/crescimento & desenvolvimento , África Oriental , Animais , Técnicas de Cultura Celular por Lotes , Alimento Funcional/economia , Genoma Bacteriano , Humanos , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/metabolismo , Leite/química , Leite/microbiologia , Probióticos , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo
11.
Environ Microbiol ; 16(6): 1524-37, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24131507

RESUMO

To overcome the deleterious effects of acid stress, Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) elicits an adaptive response to acid stress. In this study, proteomics approach complemented by transcriptional analysis revealed some cellular changes in L. bulgaricus CAUH1 during acid adaptation. We observed an increase of glycolysis-associated proteins, promoting an optimal utilization of carbohydrates. Also, rerouting of the pyruvate metabolism to fatty acid biosynthesis was observed, indicating a possible modification of the cell membrane rigidity and impermeability. In addition, expression of ribosomal protein S1 (RpsA) was repressed; however, the expression of EF-Tu, EF-G and TypA was up-regulated at both protein and transcript levels. This suggests a reduction of protein synthesis in response to acid stress along with possible enhancement of the translational accuracy and protein folding. It is noteworthy that the putative transcriptional regulator Ldb0677 was 1.84-fold up-regulated. Heterologous expression of Ldb0677 was shown to significantly enhance acid resistance in host strain Lactococcus lactis. To clarify its role in transcriptional regulation network, the DNA-binding specificity of Ldb0677 was determined using bacterial one-hybrid and electrophoretic mobility shift assay. The identification of a binding motif (SSTAGACR) present in the promoter regions of 22 genes indicates that it might function as a major regulator in acid stress response in L. bulgaricus.


Assuntos
Proteínas de Bactérias/metabolismo , Lactobacillus delbrueckii/fisiologia , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Equilíbrio Ácido-Base , Adaptação Fisiológica , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Regulação Bacteriana da Expressão Gênica , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteoma/genética , Proteômica , Fatores de Transcrição/genética
12.
J Virol ; 87(15): 8429-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23698314

RESUMO

Many phages employ a large heteropolymeric organelle located at the tip of the tail, termed the baseplate, for host recognition. Contrast electron microscopy (EM) of the lactococcal phage Tuc2009 baseplate and its host-binding subunits, the so-called tripods, allowed us to obtain a low-resolution structural image of this organelle. Structural comparisons between the baseplate of the related phage TP901-1 and that of Tuc2009 demonstrated that they are highly similar, except for the presence of an additional protein in the Tuc2009 baseplate (BppATuc2009), which is attached to the top of the Tuc2009 tripod structure. Recombinantly produced Tuc2009 or TP901-1 tripods were shown to bind specifically to their particular host cell surfaces and are capable of almost fully and specifically eliminating Tuc2009 or TP901-1 phage adsorption, respectively. In the case of Tuc2009, such adsorption-blocking ability was reduced in tripods that lacked BppATuc2009, indicating that this protein increases the binding specificity and/or affinity of the Tuc2009 tripod to its host receptor.


Assuntos
Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Viral , Sequência de Aminoácidos , Imageamento Tridimensional , Lactococcus/virologia , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura
13.
Appl Environ Microbiol ; 80(22): 7001-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25192985

RESUMO

Lactobacillus rhamnosus GG is one of the best-characterized lactic acid bacteria and can be considered a probiotic paradigm. Comparative and functional genome analysis showed that L. rhamnosus GG harbors a genomic island including the spaCBA-srtC1 gene cluster, encoding the cell surface-decorating host-interacting pili. Here, induced mutagenesis was used to study pilus biogenesis in L. rhamnosus GG. A combination of two powerful approaches, mutation selection and next-generation sequencing, was applied to L. rhamnosus GG for the selection of pilus-deficient mutants from an enriched population. The isolated mutants were first screened by immuno-dot blot analysis using antiserum against pilin proteins. Relevant mutants were selected, and the lack of pili was confirmed by immunoelectron microscopy. The pilosotype of 10 mutant strains was further characterized by analyzing pilin expression using Western blot, dot blot, and immunofluorescence methods. A mucus binding assay showed that the mutants did not adhere to porcine intestinal mucus. Comparative genome sequence analysis using the Illumina MiSeq platform allowed us to determine the nature of the mutations in the obtained pilus-deficient derivatives. Three major classes of mutants with unique genotypes were observed: class I, with mutations in the srtC1 gene; class II, with a deletion containing the spaCBA-srtC1 gene cluster; and class III, with mutations in the spaA gene. Only a limited number of collateral mutations were observed, and one of the pilus-deficient derivatives with a deficient srtC1 gene contained 24 other mutations. This strain, PB12, can be considered a candidate for human trials addressing the impact of the absence of pili.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/genética , Fímbrias Bacterianas/metabolismo , Mucosa Intestinal/microbiologia , Lacticaseibacillus rhamnosus/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/genética , Genômica , Genótipo , Humanos , Lacticaseibacillus rhamnosus/genética , Suínos
14.
Microb Cell Fact ; 13 Suppl 1: S8, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25186768

RESUMO

Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.


Assuntos
Microbiologia de Alimentos , Genoma Bacteriano , Lactobacillaceae/genética , Evolução Biológica , Trato Gastrointestinal/microbiologia , Transferência Genética Horizontal , Humanos , Lactobacillaceae/classificação , Lactobacillaceae/crescimento & desenvolvimento , Mucosa Bucal/microbiologia , Filogenia
15.
Curr Microbiol ; 69(4): 423-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24838664

RESUMO

The immunity proteins of pediocin-like bacteriocins possess a positively charged region which is located at the C-terminus in all three subclasses. It has been suggested that this region may be involved in directing the immunity protein to the surface of the bacterial cell membrane. The aim of this study was to determine whether the positively charged residue lysine-46 (K46) around the hydrophobic pocket played a key role for immunity activity of subgroup A immunity protein PedB. At first, heterologous expression of the immune gene pedB from Lactobacillus plantarum BM-1 rendered the sensitive Lactobacillus plantarum WQ0815 resistant to bacteriocin BM-1. Then, using site-directed mutagenesis, the residue K46 was replaced by five different amino-acid residues, including arginine (R), aspartate (D), glutamate (E), glutamine (Q), and threonine (T). Western blot analysis confirmed that all mutated pedB genes were successfully expressed in the host L. plantarum WQ0815. Bacteriocin activity assays subsequently showed that any substitution of the K46 residue significantly reduced its immunity activity. Our present results indicated that the positively charged residue K46 located near the hydrophobic pocket was essential for the functionality of the immunity protein PedB.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/química , Lactobacillus plantarum/genética , Lisina/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/imunologia , Bacteriocinas/genética , Bacteriocinas/imunologia , Lactobacillus plantarum/química , Lactobacillus plantarum/imunologia , Lisina/imunologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos
16.
Gut Pathog ; 16(1): 20, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581020

RESUMO

BACKGROUND: Intestinal botulism is primarily reported in small babies as a condition known as infant botulism. The condition results from the ingestion of environmental or foodborne spores of botulinum neurotoxin (BoNT) producing Clostridia, usually Clostridium botulinum, and subsequent spore germination into active botulinum neurotoxinogenic cultures in the gut. It is generally considered that small babies are susceptible to C. botulinum colonization because of their immature gut microbiota. Yet, it is poorly understood which host factors contribute to the clinical outcome of intestinal botulism. We previously reported a case of infant botulism where the infant recovered clinically in six weeks but continued to secrete C. botulinum cells and/or BoNT in the feces for seven months. CASE PRESENTATION: To further understand the microbial ecology behind this exceptionally long-lasting botulinum neurotoxinogenic colonization, we characterized the infant fecal microbiota using 16S rRNA gene amplicon sequencing over the course of disease and recovery. C. botulinum could be detected in the infant fecal samples at low levels through the acute phase of the disease and three months after recovery. Overall, we observed a temporal delay in the maturation of the infant fecal microbiota associated with a persistently high-level bifidobacterial population and a low level of Lachnospiraceae, Bacteroidaceae and Ruminococcaceae compared to healthy infants over time. CONCLUSION: This study brings novel insights into the infant fecal composition associated with intestinal botulism and provides a basis for a more systematic analysis of the gut microbiota of infants diagnosed with botulism. A better understanding of the gut microbial ecology associated with infant botulism may support the development of prophylactic strategies against this life-threatening disease in small babies.

17.
Appl Environ Microbiol ; 79(6): 1923-33, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23315726

RESUMO

Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in detail with L. casei strain BL23 and L. rhamnosus strain GG. Phenotypic analysis of the new isolates indicated differences in carbohydrate utilization between L. casei and L. rhamnosus strains, which could be linked to their genotypes. The two isolated L. rhamnosus strains had genomes that were virtually identical to that of L. rhamnosus GG, testifying to their genomic stability and integrity in food products. The L. casei strains showed much greater genomic heterogeneity. Remarkably, all strains contained an intact spaCBA pilus gene cluster. However, only the L. rhamnosus strains produced mucus-binding SpaCBA pili under the conditions tested. Transcription initiation mapping demonstrated that the insertion of an iso-IS30 element upstream of the pilus gene cluster in L. rhamnosus strains but absent in L. casei strains had constituted a functional promoter driving pilus gene expression. All L. rhamnosus strains triggered an NF-κB response via Toll-like receptor 2 (TLR2) in a reporter cell line, whereas the L. casei strains did not or did so to a much lesser extent. This study demonstrates that the two L. rhamnosus strains isolated from probiotic products are virtually identical to L. rhamnosus GG and further highlights the differences between these and L. casei strains widely marketed as probiotics, in terms of genome content, mucus-binding and metabolic capacities, and host signaling capabilities.


Assuntos
Lacticaseibacillus casei/genética , Lacticaseibacillus casei/fisiologia , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/fisiologia , Probióticos , Técnicas de Tipagem Bacteriana , Variação Genética , Genótipo , Lacticaseibacillus casei/imunologia , Lacticaseibacillus casei/metabolismo , Lacticaseibacillus rhamnosus/imunologia , Lacticaseibacillus rhamnosus/metabolismo , Fenótipo
18.
Viruses ; 15(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38140671

RESUMO

Sporulation is a finely regulated morphogenetic program important in the ecology and epidemiology of Clostridium botulinum. Exogenous elements disrupting sporulation-associated genes contribute to sporulation regulation and introduce diversity in the generally conserved sporulation programs of endospore formers. We identified a novel prophage-like DNA segment, termed the yin element, inserted within yabG, encoding a sporulation-specific cysteine protease, in an environmental isolate of C. botulinum. Bioinformatic analysis revealed that the genetic structure of the yin element resembles previously reported mobile intervening elements associated with sporulation genes. Within a pure C. botulinum culture, we observed two subpopulations of cells with the yin element either integrated into the yabG locus or excised as a circular DNA molecule. The dynamics between the two observed conformations of the yin element was growth-phase dependent and likely mediated by recombination events. The yin element was not required for sporulation by C. botulinum but triggered an earlier entry into sporulation than in a related isolate lacking this element. So far, the yin element has not been found in any other C. botulinum strains or other endospore-forming species. It remains to be demonstrated what kind of competitive edge it provides for C. botulinum survival and persistence.


Assuntos
Clostridium botulinum , Clostridium botulinum/genética , Prófagos/genética , Proteínas de Bactérias/genética
19.
FEBS Lett ; 597(4): 524-537, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653893

RESUMO

Botulinum neurotoxins (BoNTs) are among the most lethal toxins known to humans, comprising seven established serotypes termed BoNT/A-G encoded in two types of gene clusters (ha and orfX) in BoNT-producing clostridia. The ha cluster encodes four non-toxic neurotoxin-associated proteins (NAPs) that assemble with BoNTs to protect and enhance their oral toxicity. However, the structure and function of the orfX-type NAPs remain largely unknown. Here, we report the crystal structures for OrfX1, OrfX2, and an OrfX1-OrfX3 complex, which are encoded in the orfX cluster of a BoNT/E1-producing Clostridium botulinum strain associated with human foodborne botulism. These structures lay the foundation for future studies on the potential roles of OrfX proteins in oral intoxication and pathogenesis of BoNTs.


Assuntos
Toxinas Botulínicas Tipo A , Clostridium botulinum , Humanos , Clostridium botulinum/genética , Clostridium botulinum/química , Clostridium botulinum/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Família Multigênica
20.
mBio ; 13(3): e0238421, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35499308

RESUMO

In early life, the immature human gut microbiota is prone to colonization by pathogens that are usually outcompeted by mature microbiota in the adult gut. Colonization and neurotoxin production by a vegetative Clostridium botulinum culture in the gut of an infant can lead to flaccid paralysis, resulting in a clinical outcome known as infant botulism, a potentially life-threatening condition. Beside host factors, little is known of the ecology, colonization, and adaptation of C. botulinum to the gut environment. In our previous report, an infant with intestinal botulism was shown to be colonized by neurotoxigenic C. botulinum culture for 7 months. In an effort to gain ecological and evolutionary insights into this unusually long gut colonization by C. botulinum, we analyzed and compared the genomes of C. botulinum isolates recovered from the infant feces during the course of intoxication and isolates from the infant household dust. A number of observed mutations and genomic alterations pinpointed at phenotypic traits that may have promoted colonization and adaptation to the gut environment and to the host. These traits include motility, quorum-sensing, sporulation, and carbohydrate metabolism. We provide novel perspectives and suggest a tentative model of the pathogenesis of C. botulinum in infant botulism. IMPORTANCE While the clinical aspects of infant botulism and the mode of action of BoNT have been thoroughly investigated, little is known on the pathogenesis and adaptive mechanisms of C. botulinum in the gut. Here, we provide for the first time a comprehensive view on the genomic dynamics and plasticity of C. botulinum over time in a case of infant botulism. The genomic and phenotypic analysis of C. botulinum isolates collected during the disease course offers an unprecedented view of C. botulinum ecology, evolution, and pathogenesis and may be instrumental in developing novel strategies for prevention and treatment of toxicoinfectious botulism.


Assuntos
Botulismo , Clostridium botulinum , Microbioma Gastrointestinal , Botulismo/etiologia , Clostridium botulinum/genética , Fezes , Genômica , Humanos , Lactente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA