Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(1): 120-145, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528028

RESUMO

Eukaryotic initiation factor-4A2 (EIF4A2) is an ATP-dependent RNA helicase and a member of the DEAD-box protein family that recognizes the 5' cap structure of mRNAs, allows mRNA to bind to the ribosome, and plays an important role in microRNA-regulated gene repression. Here, we report on 15 individuals from 14 families presenting with global developmental delay, intellectual disability, hypotonia, epilepsy, and structural brain anomalies, all of whom have extremely rare de novo mono-allelic or inherited bi-allelic variants in EIF4A2. Neurodegeneration was predominantly reported in individuals with bi-allelic variants. Molecular modeling predicts these variants would perturb structural interactions in key protein domains. To determine the pathogenicity of the EIF4A2 variants in vivo, we examined the mono-allelic variants in Drosophila melanogaster (fruit fly) and identified variant-specific behavioral and developmental defects. The fruit fly homolog of EIF4A2 is eIF4A, a negative regulator of decapentaplegic (dpp) signaling that regulates embryo patterning, eye and wing morphogenesis, and stem cell identity determination. Our loss-of-function (LOF) rescue assay demonstrated a pupal lethality phenotype induced by loss of eIF4A, which was fully rescued with human EIF4A2 wild-type (WT) cDNA expression. In comparison, the EIF4A2 variant cDNAs failed or incompletely rescued the lethality. Overall, our findings reveal that EIF4A2 variants cause a genetic neurodevelopmental syndrome with both LOF and gain of function as underlying mechanisms.


Assuntos
Proteínas de Drosophila , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Epilepsia/genética , Fator de Iniciação 4A em Eucariotos/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Am J Hum Genet ; 108(5): 857-873, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33961779

RESUMO

The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Rim Fundido/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Adolescente , Sequência de Aminoácidos , Animais , Encefalopatias/etiologia , Criança , Pré-Escolar , Epilepsia/complicações , Evolução Molecular , Feminino , Frequência do Gene , Humanos , Lactente , Masculino , Camundongos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/deficiência , Fenótipo , Estabilidade Proteica , Síndrome , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Adulto Jovem , Peixe-Zebra/genética
3.
Clin Genet ; 105(6): 661-665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38361102

RESUMO

Familial exudative vitreoretinopathy (FEVR) is linked to disruption of the Norrin/Frizzled-4 signaling pathway, which plays an important role in retinal angiogenesis. Severe or complete knock-down of proteins in the pathway also causes syndromic forms of the condition. Both heterozygous and biallelic pathogenic variants in the FZD4 gene, encoding the pathway's key protein frizzled-4, are known to cause FEVR. However, it is not clear what effect different FZD4 variants have, and whether extraocular features should be expected in those with biallelic pathogenic FZD4 variants. Biallelic FZD4 variants were found in a young boy with isolated, severe FEVR. His parents were heterozygous for one variant each and reported normal vision. In-vitro studies of the two variants, demonstrated that it was the combination of the two which led to severe inhibition of the Norrin/Frizzled-4 pathway. Our observations demonstrate that biallelic FZD4-variants are associated with a severe form of FEVR, which does not necessarily include extraocular features. In addition, variants causing severe FEVR in combination, may have no or minimal effect in heterozygous parents as non-penetrance is also a major feature in dominant FZD4-FEVR disease. This underscores the importance of genetic testing of individuals and families with FEVR.


Assuntos
Alelos , Vitreorretinopatias Exsudativas Familiares , Receptores Frizzled , Humanos , Masculino , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/patologia , Vitreorretinopatias Exsudativas Familiares/genética , Receptores Frizzled/genética , Predisposição Genética para Doença , Heterozigoto , Mutação/genética , Linhagem , Fenótipo , Doenças Retinianas/genética , Doenças Retinianas/patologia , Lactente , Pré-Escolar
4.
Am J Hum Genet ; 106(2): 234-245, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31928709

RESUMO

Germline pathogenic variants in chromatin-modifying enzymes are a common cause of pediatric developmental disorders. These enzymes catalyze reactions that regulate epigenetic inheritance via histone post-translational modifications and DNA methylation. Cytosine methylation (5-methylcytosine [5mC]) of DNA is the quintessential epigenetic mark, yet no human Mendelian disorder of DNA demethylation has yet been delineated. Here, we describe in detail a Mendelian disorder caused by the disruption of DNA demethylation. TET3 is a methylcytosine dioxygenase that initiates DNA demethylation during early zygote formation, embryogenesis, and neuronal differentiation and is intolerant to haploinsufficiency in mice and humans. We identify and characterize 11 cases of human TET3 deficiency in eight families with the common phenotypic features of intellectual disability and/or global developmental delay; hypotonia; autistic traits; movement disorders; growth abnormalities; and facial dysmorphism. Mono-allelic frameshift and nonsense variants in TET3 occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity. TET3 deficiency and other Mendelian disorders of the epigenetic machinery show substantial phenotypic overlap, including features of intellectual disability and abnormal growth, underscoring shared disease mechanisms.


Assuntos
Desmetilação do DNA , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Dioxigenases/deficiência , Adulto , Sequência de Aminoácidos , Transtorno Autístico/genética , Transtorno Autístico/patologia , Criança , Pré-Escolar , Dioxigenases/química , Dioxigenases/genética , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Linhagem , Conformação Proteica , Homologia de Sequência , Adulto Jovem
5.
J Med Genet ; 59(4): 393-398, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33879512

RESUMO

PURPOSE: The increased adoption of genomic strategies in the clinic makes it imperative for diagnostic laboratories to improve the efficiency of variant interpretation. Clinical exome sequencing (CES) is becoming a valuable diagnostic tool, capable of meeting the diagnostic demand imposed by the vast array of different rare monogenic disorders. We have assessed a clinician-led and phenotype-based approach for virtual gene panel generation for analysis of targeted CES in patients with rare disease in a single institution. METHODS: Retrospective survey of 400 consecutive cases presumed by clinicians to have rare monogenic disorders, referred on singleton basis for targeted CES. We evaluated diagnostic yield and variant workload to characterise the usefulness of a clinician-led approach for generation of virtual gene panels that can incorporate up to three different phenotype-driven gene selection methods. RESULTS: Abnormalities of the nervous system (54.5%), including intellectual disability, head and neck (19%), skeletal system (16%), ear (15%) and eye (15%) were the most common clinical features reported in referrals. Combined phenotype-driven strategies for virtual gene panel generation were used in 57% of cases. On average, 7.3 variants (median=5) per case were retained for clinical interpretation. The overall diagnostic rate of proband-only CES using personalised phenotype-driven virtual gene panels was 24%. CONCLUSIONS: Our results show that personalised virtual gene panels are a cost-effective approach for variant analysis of CES, maintaining diagnostic yield and optimising the use of resources for clinical genomic sequencing in the clinic.


Assuntos
Exoma , Doenças Raras , Exoma/genética , Humanos , Doenças Raras/genética , Estudos Retrospectivos , Sequenciamento do Exoma , Carga de Trabalho
6.
Hum Mutat ; 43(7): 963-970, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35476365

RESUMO

Use of blood RNA sequencing (RNA-seq) as a splicing analysis tool for clinical interpretation of variants of uncertain significance (VUSs) found via whole-genome and exome sequencing can be difficult for genes that have low expression in the blood due to insufficient read count coverage aligned to specific genes of interest. Here, we present a short amplicon reverse transcription-polymerase chain reaction(RT-PCR) for the detection of genes with low blood expression. Short amplicon RT-PCR, is designed to span three exons where an exon harboring a variant is flanked by one upstream and one downstream exon. We tested short amplicon RT-PCRs for genes that have median transcripts per million (TPM) values less than one according to the genotype-tissue expression database. Median TPM values of genes analyzed in this study are SYN1 = 0.8549, COL1A1 = 0.6275, TCF4 = 0.4009, DSP = .2894, TTN = 0.2851, COL5A2 = 0.1036, TERT = 0.04452, NTRK2 = 0.0344, ABCA4 = 0.00744, PRPH = 0, and WT1 = 0. All these genes show insufficient exon-spanning read coverage in our RNA-seq data to allow splicing analysis. We successfully detected all genes tested except PRPH and WT1. Aberrant splicing was detected in SYN1, TCF4, NTRK2, TTN, and TERT VUSs. Therefore, our results show short amplicon RT-PCR is a useful alternative for the analysis of splicing events in genes with low TPM in blood RNA for clinical diagnostics.


Assuntos
Processamento Alternativo , RNA , Transportadores de Cassetes de Ligação de ATP/genética , Humanos , RNA/genética , Splicing de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa
7.
Am J Med Genet C Semin Med Genet ; 190(1): 102-108, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35488810

RESUMO

Biallelic loss-of-function (LoF) variants in CENPF gene are responsible for Strømme syndrome, a condition presenting with intestinal atresia, anterior ocular chamber anomalies, and microcephaly. Through an international collaboration, four individuals (three males and one female) carrying CENPF biallelic variants, including two missense variants in homozygous state and four LoF variants, were identified by exome sequencing. All individuals had variable degree of developmental delay/intellectual disability and microcephaly (ranging from -2.9 SDS to -5.6 SDS) and a recognizable pattern of dysmorphic facial features including inverted-V shaped interrupted eyebrows, epicanthal fold, depressed nasal bridge, and pointed chin. Although one of the cases had duodenal atresia, all four individuals did not have the combination of internal organ malformations of Strømme syndrome (intestinal atresia and anterior eye segment abnormalities). Immunofluorescence analysis on skin fibroblasts on one of the four cases with the antibody for ARL13B that decorates primary cilia revealed shorter primary cilia that are consistent with a ciliary defect. This case-series of individuals with biallelic CENPF variants suggests the spectrum of clinical manifestations of the disorder that may be related to CENPF variants is broad and can include phenotypes lacking the cardinal features of Strømme syndrome.


Assuntos
Proteínas Cromossômicas não Histona , Deficiência Intelectual , Atresia Intestinal , Microcefalia , Proteínas dos Microfilamentos , Proteínas Cromossômicas não Histona/genética , Anormalidades do Olho , Feminino , Humanos , Atresia Intestinal/genética , Masculino , Microcefalia/genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Fenótipo
8.
Genome Res ; 29(2): 159-170, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30587507

RESUMO

Mutations that perturb normal pre-mRNA splicing are significant contributors to human disease. We used exome sequencing data from 7833 probands with developmental disorders (DDs) and their unaffected parents, as well as more than 60,000 aggregated exomes from the Exome Aggregation Consortium, to investigate selection around the splice sites and quantify the contribution of splicing mutations to DDs. Patterns of purifying selection, a deficit of variants in highly constrained genes in healthy subjects, and excess de novo mutations in patients highlighted particular positions within and around the consensus splice site of greater functional relevance. By using mutational burden analyses in this large cohort of proband-parent trios, we could estimate in an unbiased manner the relative contributions of mutations at canonical dinucleotides (73%) and flanking noncanonical positions (27%), and calculate the positive predictive value of pathogenicity for different classes of mutations. We identified 18 patients with likely diagnostic de novo mutations in dominant DD-associated genes at noncanonical positions in splice sites. We estimate 35%-40% of pathogenic variants in noncanonical splice site positions are missing from public databases.


Assuntos
Deficiências do Desenvolvimento/genética , Mutação , Sítios de Splice de RNA , Exoma , Humanos , Sequenciamento do Exoma
9.
Clin Genet ; 101(2): 255-259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713892

RESUMO

The developmental disorder Burn-McKeown Syndrome (BMKS) is characterised by choanal atresia and specific craniofacial features. BMKS is caused by biallelic variants in the pre-messenger RNA splicing factor TXNL4A. Most patients have a loss-of-function variant in trans with a 34-base pair (bp) deletion (type 1 Δ34) in the promoter region. Here, we identified two patients with BMKS. One individual has a TXNL4A c.93_94delCC, p.His32Argfs *21 variant combined with a type 1 Δ34 promoter deletion. The other has an intronic TXNL4A splice site variant (c.258-3C>G) and a type 1 Δ34 promoter deletion. We show the c.258-3C>G variant and a previously reported c.258-2A>G variant, cause skipping of the final exon of TXNL4A in a minigene splicing assay. Furthermore, we identify putative transcription factor binding sites within the 56 bp of the TXNL4A promoter affected by the type 1 and type 2 Δ34 and use dual luciferase assays to identify a 22 bp repeated motif essential for TXNL4A expression within this promoter region. We propose that additional variants affecting critical transcription factor binding nucleotides within the 22 bp repeated motif could be relevant to BMKS aetiology. Finally, our data emphasises the need to analyse the non-coding sequence in individuals where a single likely pathogenic coding variant is identified in an autosomal recessive disorder consistent with the clinical presentation.


Assuntos
Atresia das Cóanas/diagnóstico , Atresia das Cóanas/genética , Surdez/congênito , Genótipo , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Mutação , Ribonucleoproteína Nuclear Pequena U5/genética , Alelos , Sítios de Ligação , Surdez/diagnóstico , Surdez/genética , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Linhagem , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Fatores de Transcrição/metabolismo
11.
Clin Genet ; 101(1): 32-47, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34240408

RESUMO

Growth promoting variants in PIK3CA cause a spectrum of developmental disorders, depending on the developmental timing of the mutation and tissues involved. These phenotypically heterogeneous entities have been grouped as PIK3CA-Related Overgrowth Spectrum disorders (PROS). Deep sequencing technologies have facilitated detection of low-level mosaic, often necessitating testing of tissues other than blood. Since clinical management practices vary considerably among healthcare professionals and services across different countries, a consensus on management guidelines is needed. Clinical heterogeneity within this spectrum leads to challenges in establishing management recommendations, which must be based on patient-specific considerations. Moreover, as most of these conditions are rare, affected families may lack access to the medical expertise that is needed to help address the multi-system and often complex medical issues seen with PROS. In March 2019, macrocephaly-capillary malformation (M-CM) patient organizations hosted an expert meeting in Manchester, United Kingdom, to help address these challenges with regards to M-CM syndrome. We have expanded the scope of this project to cover PROS and developed this consensus statement on the preferred approach for managing affected individuals based on our current knowledge.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Padrão de Cuidado , Conferências de Consenso como Assunto , Diagnóstico Diferencial , Gerenciamento Clínico , Estudos de Associação Genética/métodos , Testes Genéticos , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Transtornos do Crescimento/terapia , Humanos , Fenótipo , Diagnóstico Pré-Natal
12.
Am J Med Genet A ; 188(4): 1065-1074, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34921505

RESUMO

Variants in transcription factor GLI2 have been associated with hypopituitarism and structural brain abnormalities, occasionally including holoprosencephaly (HPE). Substantial phenotypic variability and nonpenetrance have been described, posing difficulties in the counseling of affected families. We present three individuals with novel likely pathogenic GLI2 variants, two with truncating and one with a de novo missense variant p.(Ser548Leu), and review the literature for comprehensive phenotypic descriptions of individuals with confirmed pathogenic (a) intragenic GLI2 variants and (b) chromosome 2q14.2 deletions encompassing only GLI2. We show that most of the 31 missense variants previously reported as pathogenic are likely benign or, at most, low-risk variants. Four Zn-finger variants: p.(Arg479Gly), p.(Arg516Pro), p.(Gly518Lys), and p.(Tyr575His) were classified as likely pathogenic, and three other variants as possibly pathogenic: p.(Pro253Ser), p.(Ala593Val), and p.(Pro1243Leu). We analyze the phenotypic descriptions of 60 individuals with pathogenic GLI2 variants and evidence a morbidity spectrum that includes hypopituitarism (58%), HPE (6%) or other brain structure abnormalities (15%), orofacial clefting (17%) and dysmorphic facial features (35%). We establish that truncating and Zn-finger variants in GLI2 are associated with a high risk of hypopituitarism, and that a solitary median maxillary central incisor is part of the GLI2-related phenotypic variability. The most prevalent phenotypic feature is post-axial polydactyly (65%) which is also the mildest phenotypic expression of the condition, reported in many parents of individuals with systemic findings. Our approach clarifies clinical risks and the important messages to discuss in counseling for a pathogenic GLI2 variant.


Assuntos
Holoprosencefalia , Hipopituitarismo , Holoprosencefalia/genética , Humanos , Hipopituitarismo/genética , Hipopituitarismo/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Mutação , Proteínas Nucleares/genética , Fenótipo , Zinco , Proteína Gli2 com Dedos de Zinco/genética
14.
Genet Med ; 23(11): 2138-2149, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34244665

RESUMO

PURPOSE: We aimed to define a novel autosomal recessive neurodevelopmental disorder, characterize its clinical features, and identify the underlying genetic cause for this condition. METHODS: We performed a detailed clinical characterization of 19 individuals from nine unrelated, consanguineous families with a neurodevelopmental disorder. We used genome/exome sequencing approaches, linkage and cosegregation analyses to identify disease-causing variants, and we performed three-dimensional molecular in silico analysis to predict causality of variants where applicable. RESULTS: In all affected individuals who presented with a neurodevelopmental syndrome with progressive microcephaly, seizures, and intellectual disability we identified biallelic disease-causing variants in Protocadherin-gamma-C4 (PCDHGC4). Five variants were predicted to induce premature protein truncation leading to a loss of PCDHGC4 function. The three detected missense variants were located in extracellular cadherin (EC) domains EC5 and EC6 of PCDHGC4, and in silico analysis of the affected residues showed that two of these substitutions were predicted to influence the Ca2+-binding affinity, which is essential for multimerization of the protein, whereas the third missense variant directly influenced the cis-dimerization interface of PCDHGC4. CONCLUSION: We show that biallelic variants in PCDHGC4 are causing a novel autosomal recessive neurodevelopmental disorder and link PCDHGC4 as a member of the clustered PCDH family to a Mendelian disorder in humans.


Assuntos
Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Proteínas Relacionadas a Caderinas , Caderinas/genética , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Fenótipo , Convulsões/genética
15.
Genet Med ; 22(4): 745-751, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31848469

RESUMO

PURPOSE: A key property to consider in all genetic tests is clinical utility, the ability of the test to influence patient management and health outcomes. Here we assess the current clinical utility of genetic testing in diverse pediatric inherited eye disorders (IEDs). METHODS: Two hundred one unrelated children (0-5 years old) with IEDs were ascertained through the database of the North West Genomic Laboratory Hub, Manchester, UK. The cohort was collected over a 7-year period (2011-2018) and included 74 children with bilateral cataracts, 8 with bilateral ectopia lentis, 28 with bilateral anterior segment dysgenesis, 32 with albinism, and 59 with inherited retinal disorders. All participants underwent panel-based genetic testing. RESULTS: The diagnostic yield of genetic testing for the cohort was 64% (ranging from 39% to 91% depending on the condition). The test result led to altered management (including preventing additional investigations or resulting in the introduction of personalized surveillance measures) in 33% of probands (75% for ectopia lentis, 50% for cataracts, 33% for inherited retinal disorders, 7% for anterior segment dysgenesis, 3% for albinism). CONCLUSION: Genetic testing helped identify an etiological diagnosis in the majority of preschool children with IEDs. This prevented additional unnecessary testing and provided the opportunity for anticipatory guidance in significant subsets of patients.


Assuntos
Catarata , Anormalidades do Olho , Testes Genéticos , Doenças Retinianas , Catarata/diagnóstico , Catarata/genética , Pré-Escolar , Olho , Anormalidades do Olho/genética , Humanos , Lactente , Recém-Nascido , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética
17.
Genet Med ; 22(9): 1498-1506, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32499606

RESUMO

PURPOSE: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism nearBMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype. METHODS: We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives. We examined the inhibitory activity and stability of SMAD6 missense variants. RESULTS: We found 18 (2.3%) different rare damaging SMAD6 variants, with the highest prevalence in metopic synostosis (5.8%) and an 18.3-fold enrichment of loss-of-function variants comparedwith gnomAD data (P < 10-7). Combined with eight additional variants, ≥20/26 were transmitted from an unaffected parent but rs1884302 genotype did not predict phenotype. CONCLUSION: Pathogenic SMAD6 variants substantially increase the risk of both nonsyndromic and syndromic presentations of craniosynostosis, especially metopic synostosis. Functional analysis is important to evaluate missense variants. Genotyping of rs1884302 is not clinically useful. Mechanisms to explain the remarkable diversity of phenotypes associated with SMAD6 variants remain obscure.


Assuntos
Craniossinostoses , Craniossinostoses/genética , Genótipo , Humanos , Mutação de Sentido Incorreto/genética , Penetrância , Fenótipo , Proteína Smad6/genética
18.
Am J Med Genet C Semin Med Genet ; 181(4): 638-643, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31714006

RESUMO

BRWD3 has been described as a cause of X-linked intellectual disability, but relatively little is known about the specific phenotype. We report the largest BRWD3 patient series to date, comprising 17 males with 12 distinct null variants and 2 partial gene deletions. All patients presented with intellectual disability, which was classified as moderate (65%) or mild (35%). Behavioral issues were present in 75% of patients, including aggressive behavior, attention deficit/hyperactivity and/or autistic spectrum disorders. Mean head circumference was +2.8 SD (2.8 standard deviations above the mean), and mean BMI was +2.0 SD (in the context of a mean height of +1.3 SD), indicating a predominant macrocephaly/obesity phenotype. Shared facial features included a tall chin, prognathism, broad forehead, and prominent supraorbital ridge. Additional features, reported in a minority (<30%) of patients included cryptorchidism, neonatal hypotonia, and small joint hypermobility. This study delineates the clinical features associated with BRWD3 null variants and partial gene deletions, and suggests that BRWD3 should be included in the differential diagnosis of patients with an overgrowth-intellectual disability (OGID) phenotype, particularly in male patients with a mild or moderate intellectual disability associated with macrocephaly and/or obesity.


Assuntos
Deleção de Genes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Megalencefalia/genética , Obesidade/genética , Fatores de Transcrição/genética , Adolescente , Criança , Humanos , Masculino , Índice de Gravidade de Doença , Síndrome
19.
Am J Med Genet C Semin Med Genet ; 181(4): 557-564, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31721432

RESUMO

CHD8 has been reported as an autism susceptibility/intellectual disability gene but emerging evidence suggests that it additionally causes an overgrowth phenotype. This study reports 27 unrelated patients with pathogenic or likely pathogenic CHD8 variants (25 null variants, two missense variants) and a male:female ratio of 21:6 (3.5:1, p < .01). All patients presented with intellectual disability, with 85% in the mild or moderate range, and 85% had a height and/or head circumference ≥2 standard deviations above the mean, meeting our clinical criteria for overgrowth. Behavioral problems were reported in the majority of patients (78%), with over half (56%) either formally diagnosed with an autistic spectrum disorder or described as having autistic traits. Additional clinical features included neonatal hypotonia (33%), and less frequently seizures, pes planus, scoliosis, fifth finger clinodactyly, umbilical hernia, and glabellar hemangioma (≤15% each). These results suggest that, in addition to its established link with autism and intellectual disability, CHD8 causes an overgrowth phenotype, and should be considered in the differential diagnosis of patients presenting with increased height and/or head circumference in association with intellectual disability.


Assuntos
Caderinas/genética , Transtornos do Crescimento/genética , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Síndrome , Adulto Jovem
20.
Genet Med ; 21(12): 2807-2814, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31164752

RESUMO

PURPOSE: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. METHODS: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. RESULTS: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene. CONCLUSION: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis.


Assuntos
Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Bases de Dados Genéticas , Aprendizado Profundo , Exoma/genética , Feminino , Genômica , Humanos , Masculino , Fenótipo , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA