Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nucleic Acids Res ; 50(14): 8127-8142, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35849337

RESUMO

Integrative and conjugative elements (ICEs) are important drivers of horizontal gene transfer in prokaryotes. They are responsible for antimicrobial resistance spread, a major current health concern. ICEs are initially processed by relaxases that recognize the binding site of oriT sequence and nick at a conserved nic site. The ICESt3/Tn916/ICEBs1 superfamily, which is widespread among Firmicutes, encodes uncanonical relaxases belonging to a recently identified family called MOBT. This family is related to the rolling circle replication initiators of the Rep_trans family. The nic site of these MOBT relaxases is conserved but their DNA binding site is still unknown. Here, we identified the bind site of RelSt3, the MOBT relaxase from ICESt3. Unexpectedly, we found this bind site distantly located from the nic site. We revealed that the binding of the RelSt3 N-terminal HTH domain is required for efficient nicking activity. We also deciphered the role of RelSt3 in the initial and final stages of DNA processing during conjugation. Especially, we demonstrated a strand transfer activity, and the formation of covalent DNA-relaxase intermediate for a MOBT relaxase.


Assuntos
Proteínas de Bactérias , Conjugação Genética , DNA Nucleotidiltransferases , Bactérias Gram-Positivas , Sequências Repetitivas Dispersas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , DNA Bacteriano/genética , Transferência Genética Horizontal , Bactérias Gram-Positivas/genética , Plasmídeos/genética
2.
Chembiochem ; 24(15): e202300099, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999435

RESUMO

The type 2 secretion system (T2SS) is a bacterial nanomachine composed of an inner membrane assembly platform, an outer membrane pore and a dynamic endopilus. T2SS endopili are organized into a homo-multimeric body formed by the major pilin capped by a heterocomplex of four minor pilins. The first model of the T2SS endopilus was recently released, even if structural dynamics insights are still required to decipher the role of each protein in the full tetrameric complex. Here, we applied continuous-wave and pulse EPR spectroscopy using nitroxide-gadolinium orthogonal labelling strategies to investigate the hetero-oligomeric assembly of the minor pilins. Overall, our data are in line with the endopilus model even if they evidenced conformational flexibility and alternative orientations at local scale of specific regions of minor pilins. The integration of different labelling strategies and EPR experiments demonstrates the pertinence of this approach to investigate protein-protein interactions in such multiprotein heterocomplexes.


Assuntos
Sistemas de Secreção Tipo II , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas , Marcadores de Spin
3.
Nature ; 531(7592): 59-63, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26909579

RESUMO

Contractile tails are composed of an inner tube wrapped by an outer sheath assembled in an extended, metastable conformation that stores mechanical energy necessary for its contraction. Contraction is used to propel the rigid inner tube towards target cells for DNA or toxin delivery. Although recent studies have revealed the structure of the contractile sheath of the type VI secretion system, the mechanisms by which its polymerization is controlled and coordinated with the assembly of the inner tube remain unknown. Here we show that the starfish-like TssA dodecameric complex interacts with tube and sheath components. Fluorescence microscopy experiments in enteroaggregative Escherichia coli reveal that TssA binds first to the type VI secretion system membrane core complex and then initiates tail polymerization. TssA remains at the tip of the growing structure and incorporates new tube and sheath blocks. On the basis of these results, we propose that TssA primes and coordinates tail tube and sheath biogenesis.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Polimerização , Cristalografia por Raios X , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Terciária de Proteína , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/ultraestrutura
4.
J Biol Chem ; 293(50): 19441-19450, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30337370

RESUMO

In many Gram-negative bacteria, the type 2 secretion system (T2SS) plays an important role in virulence because of its capacity to deliver a large amount of fully folded protein effectors to the extracellular milieu. Despite our knowledge of most T2SS components, the mechanisms underlying effector recruitment and secretion by the T2SS remain enigmatic. Using complementary biophysical and biochemical approaches, we identified here two direct interactions between the secreted effector CbpD and two components, XcpYL and XcpZM, of the T2SS assembly platform (AP) in the opportunistic pathogen Pseudomonas aeruginosa Competition experiments indicated that CbpD binding to XcpYL is XcpZM-dependent, suggesting sequential recruitment of the effector by the periplasmic domains of these AP components. Using a bacterial two-hybrid system, we then tested the influence of the effector on the AP protein-protein interaction network. Our findings revealed that the presence of the effector modifies the AP interactome and, in particular, induces XcpZM homodimerization and increases the affinity between XcpYL and XcpZM The observed direct relationship between effector binding and T2SS dynamics suggests an additional synchronizing step during the type 2 secretion process, where the activation of the AP of the T2SS nanomachine is triggered by effector binding.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo II/metabolismo , Proteínas de Bactérias/química , Periplasma/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo II/química
5.
PLoS Genet ; 11(10): e1005545, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26460929

RESUMO

The Type VI secretion system (T6SS) is a widespread weapon dedicated to the delivery of toxin proteins into eukaryotic and prokaryotic cells. The 13 T6SS subunits assemble a cytoplasmic contractile structure anchored to the cell envelope by a membrane-spanning complex. This structure is evolutionarily, structurally and functionally related to the tail of contractile bacteriophages. In bacteriophages, the tail assembles onto a protein complex, referred to as the baseplate, that not only serves as a platform during assembly of the tube and sheath, but also triggers the contraction of the sheath. Although progress has been made in understanding T6SS assembly and function, the composition of the T6SS baseplate remains mostly unknown. Here, we report that six T6SS proteins-TssA, TssE, TssF, TssG, TssK and VgrG-are required for proper assembly of the T6SS tail tube, and a complex between VgrG, TssE,-F and-G could be isolated. In addition, we demonstrate that TssF and TssG share limited sequence homologies with known phage components, and we report the interaction network between these subunits and other baseplate and tail components. In agreement with the baseplate being the assembly platform for the tail, fluorescence microscopy analyses of functional GFP-TssF and TssK-GFP fusion proteins show that these proteins assemble stable and static clusters on which the sheath polymerizes. Finally, we show that recruitment of the baseplate to the apparatus requires initial positioning of the membrane complex and contacts between TssG and the inner membrane TssM protein.


Assuntos
Proteínas Contráteis/ultraestrutura , Proteínas de Escherichia coli/genética , Sistemas de Secreção Tipo VI/ultraestrutura , Proteínas da Cauda Viral/genética , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Proteínas Contráteis/genética , Citoplasma/genética , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Membrana/genética , Microscopia de Fluorescência , Complexos Multiproteicos/genética , Homologia de Sequência de Aminoácidos , Sistemas de Secreção Tipo VI/genética , Proteínas Virais/genética
6.
Biochim Biophys Acta ; 1843(8): 1664-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24681160

RESUMO

The Type VI secretion system (T6SS) delivers protein effectors to diverse cell types including prokaryotic and eukaryotic cells, therefore it participates in inter-bacterial competition and pathogenesis. The T6SS is constituted of an envelope-spanning complex anchoring a cytoplasmic tubular edifice. This tubular structure is evolutionarily, functionally and structurally related to the tail of contractile phages. It is composed of an inner tube tipped by a spike complex, and engulfed within a sheath-like structure. This structure assembles onto a platform called "baseplate" that is connected to the membrane sub-complex. The T6SS functions as a nano-crossbow: upon contraction of the sheath, the inner tube is propelled towards the target cell, allowing effector delivery. This review focuses on the architecture and biogenesis of this fascinating secretion machine, highlighting recent advances regarding the assembly of the membrane or tail complexes. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Assuntos
Bactérias/patogenicidade , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Transporte Proteico/genética , Bactérias/química , Proteínas de Bactérias/química , Bacteriófagos/química , Bacteriófagos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Citoplasma/metabolismo , Células Eucarióticas/metabolismo , Células Procarióticas/metabolismo
7.
J Bacteriol ; 196(13): 2376-86, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24748613

RESUMO

We present here the functional characterization of a third complete type II secretion system (T2SS) found in newly sequenced Pseudomonas aeruginosa strain PA7. We call this system Txc (third Xcp homolog). This system is encoded by the RGP69 region of genome plasticity found uniquely in strain PA7. In addition to the 11 txc genes, RGP69 contains two additional genes encoding a possible T2SS substrate and a predicted unorthodox sensor protein, TtsS (type II secretion sensor). We also identified a gene encoding a two-component response regulator called TtsR (type II secretion regulator), which is located upstream of the ttsS gene and just outside RGP69. We show that TtsS and TtsR constitute a new and functional two-component system that controls the production and secretion of the RGP69-encoded T2SS substrate in a Txc-dependent manner. Finally, we demonstrate that this Txc-secreted substrate binds chitin, and we therefore name it CbpE (chitin-binding protein E).


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Quitina/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Ligação Proteica/fisiologia , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Transporte/genética , Clonagem Molecular , Escherichia coli/metabolismo , Dados de Sequência Molecular , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Proteínas Recombinantes , Saccharomyces cerevisiae/metabolismo
8.
J Biol Chem ; 288(38): 27031-27041, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23921384

RESUMO

The Type VI secretion system (T6SS) is a macromolecular machine that mediates bacteria-host or bacteria-bacteria interactions. The T6SS core apparatus assembles from 13 proteins that form two sub-assemblies: a phage-like complex and a trans-envelope complex. The Hcp, VgrG, TssE, and TssB/C subunits are structurally and functionally related to components of the tail of contractile bacteriophages. This phage-like structure is thought to be anchored to the membrane by a trans-envelope complex composed of the TssJ, TssL, and TssM proteins. However, how the two sub-complexes are connected remains unknown. Here we identify TssK, a protein that establishes contacts with the two T6SS sub-complexes through direct interactions with TssL, Hcp, and TssC. TssK is a cytoplasmic protein assembling trimers that display a three-armed shape, as revealed by TEM and SAXS analyses. Fluorescence microscopy experiments further demonstrate the requirement of TssK for sheath assembly. Our results suggest a central role for TssK by linking both complexes during T6SS assembly.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Bacteriófagos , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Complexos Multiproteicos/genética
9.
Microbiol Spectr ; 12(4): e0405823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358282

RESUMO

The export of peptides or proteins is essential for a variety of important functions in bacteria. Among the diverse protein-translocation systems, peptidase-containing ABC transporters (PCAT) are involved in the maturation and export of quorum-sensing or antimicrobial peptides in Gram-positive bacteria and of toxins in Gram-negative organisms. In the multicellular and diazotrophic cyanobacterium Nostoc PCC 7120, the protein HetC is essential for the differentiation of functional heterocysts, which are micro-oxic and non-dividing cells specialized in atmospheric nitrogen fixation. HetC shows similarities to PCAT systems, but whether it actually acts as a peptidase-based exporter remains to be established. In this study, we show that the N-terminal part of HetC, encompassing the peptidase domain, displays a cysteine-type protease activity. The conserved catalytic residues conserved in this family of proteases are essential for the proteolytic activity of HetC and the differentiation of heterocysts. Furthermore, we show that the catalytic residue of the ATPase domain of HetC is also essential for cell differentiation. Interestingly, HetC has a cyclic nucleotide-binding domain at its N-terminus which can bind ppGpp in vitro and which is required for its function in vivo. Our results indicate that HetC is a peculiar PCAT that might be regulated by ppGpp to potentially facilitate the export of a signaling peptide essential for cell differentiation, thereby broadening the scope of PCAT role in Gram-negative bacteria.IMPORTANCEBacteria have a great capacity to adapt to various environmental and physiological conditions; it is widely accepted that their ability to produce extracellular molecules contributes greatly to their fitness. Exported molecules are used for a variety of purposes ranging from communication to adjust cellular physiology, to the production of toxins that bacteria secrete to fight for their ecological niche. They use export machineries for this purpose, the most common of which energize transport by hydrolysis of adenosine triphosphate. Here, we demonstrate that such a mechanism is involved in cell differentiation in the filamentous cyanobacterium Nostoc PCC 7120. The HetC protein belongs to the ATP-binding cassette transporter superfamily and presumably ensures the maturation of a yet unknown substrate during export. These results open interesting perspectives on cellular signaling pathways involving the export of regulatory peptides, which will broaden our knowledge of how these bacteria use two cell types to conciliate photosynthesis and nitrogen fixation.


Assuntos
Anabaena , Nostoc , Nostoc/genética , Nostoc/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Anabaena/metabolismo , Guanosina Tetrafosfato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Peptídeos/metabolismo , Diferenciação Celular , Regulação Bacteriana da Expressão Gênica
10.
PLoS Pathog ; 7(11): e1002386, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22102820

RESUMO

Type VI secretion systems (T6SS) are trans-envelope machines dedicated to the secretion of virulence factors into eukaryotic or prokaryotic cells, therefore required for pathogenesis and/or for competition towards neighboring bacteria. The T6SS apparatus resembles the injection device of bacteriophage T4, and is anchored to the cell envelope through a membrane complex. This membrane complex is composed of the TssL, TssM and TagL inner membrane anchored proteins and of the TssJ outer membrane lipoprotein. Here, we report the crystal structure of the enteroaggregative Escherichia coli Sci1 TssJ lipoprotein, a two four-stranded ß-sheets protein that exhibits a transthyretin fold with an additional α-helical domain and a protruding loop. We showed that TssJ contacts TssM through this loop since a loop depleted mutant failed to interact with TssM in vitro or in vivo. Biophysical analysis of TssM and TssJ-TssM interaction suggest a structural model of the membrane-anchored outer shell of T6SS. Collectively, our results provide an improved understanding of T6SS assembly and encourage structure-aided drug design of novel antimicrobials targeting T6SS.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Sistemas de Secreção Bacterianos , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Lipopeptídeos/química , Proteínas de Membrana/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/metabolismo , Lipopeptídeos/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Fatores de Virulência/química , Fatores de Virulência/metabolismo
11.
Microb Cell Fact ; 12: 37, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23607455

RESUMO

BACKGROUND: Disulfide-rich proteins or DRPs are versatile bioactive compounds that encompass a wide variety of pharmacological, therapeutic, and/or biotechnological applications. Still, the production of DRPs in sufficient quantities is a major bottleneck for their complete structural or functional characterization. Recombinant expression of such small proteins containing multiple disulfide bonds in the bacteria E. coli is considered difficult and general methods and protocols, particularly on a high throughput scale, are limited. RESULTS: Here we report a high throughput screening approach that allowed the systematic investigation of the solubilizing and folding influence of twelve cytoplasmic partners on 28 DRPs in the strains BL21 (DE3) pLysS, Origami B (DE3) pLysS and SHuffle® T7 Express lysY (1008 conditions). The screening identified the conditions leading to the successful soluble expression of the 28 DRPs selected for the study. Amongst 336 conditions tested per bacterial strain, soluble expression was detected in 196 conditions using the strain BL21 (DE3) pLysS, whereas only 44 and 50 conditions for soluble expression were identified for the strains Origami B (DE3) pLysS and SHuffle® T7 Express lysY respectively. To assess the redox states of the DRPs, the solubility screen was coupled with mass spectrometry (MS) to determine the exact masses of the produced DRPs or fusion proteins. To validate the results obtained at analytical scale, several examples of proteins expressed and purified to a larger scale are presented along with their MS and functional characterization. CONCLUSIONS: Our results show that the production of soluble and functional DRPs with cytoplasmic partners is possible in E. coli. In spite of its reducing cytoplasm, BL21 (DE3) pLysS is more efficient than the Origami B (DE3) pLysS and SHuffle® T7 Express lysY trxB(-)/gor(-) strains for the production of DRPs in fusion with solubilizing partners. However, our data suggest that oxidation of the proteins occurs ex vivo. Our protocols allow the production of a large diversity of DRPs using DsbC as a fusion partner, leading to pure active DRPs at milligram scale in many cases. These results open up new possibilities for the study and development of DRPs with therapeutic or biotechnological interest whose production was previously a limitation.


Assuntos
Escherichia coli/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Citoplasma/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Biochimie ; 205: 110-116, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36096236

RESUMO

To exchange and communicate with their surroundings, bacteria have evolved multiple active and passive mechanisms for trans-envelope transport. Among the pore-forming complexes found in the outer membrane of Gram-negative bacteria, secretins are distinctive homo-oligomeric channels dedicated to the active translocation of voluminous structures such as folded proteins, assembled fibers, virus particles or DNA. Members of the bacterial secretin family share a common cylinder-shaped structure with a gated pore-forming part inserted in the outer membrane, and a periplasmic channel connected to the inner membrane components of the corresponding nanomachine. In this mini-review, we will present what recently determined 3D structures have told us about the mechanisms of translocation through secretins of large substrates to the bacterial surface or in the extracellular milieu.


Assuntos
Bactérias Gram-Negativas , Secretina , Secretina/química , Secretina/genética , Secretina/metabolismo , Ligação Proteica , Transporte Proteico , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/química
13.
Sci Adv ; 9(40): eadg6996, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37792935

RESUMO

Secretins are outer membrane (OM) channels found in various bacterial nanomachines that secrete or assemble large extracellular structures. High-resolution 3D structures of type 2 secretion system (T2SS) secretins revealed bimodular channels with a C-module, holding a conserved central gate and an optional top gate, followed by an N-module for which multiple structural organizations have been proposed. Here, we perform a structure-driven in vivo study of the XcpD secretin, which validates one of the organizations of the N-module whose flexibility enables alternative conformations. We also show the existence of the central gate in vivo and its required flexibility, which is key for substrate passage and watertightness control. Last, functional, genomic, and phylogenetic analyses indicate that the optional top gate provides a gain of watertightness. Our data illustrate how the gating properties of T2SS secretins allow these large channels to overcome the duality between the necessity of preserving the OM impermeability while simultaneously promoting the secretion of large, folded effectors.


Assuntos
Sistemas de Secreção Tipo II , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/metabolismo , Secretina/metabolismo , Filogenia , Ligação Proteica , Proteínas de Bactérias/metabolismo
14.
J Biol Chem ; 286(47): 40792-801, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21949187

RESUMO

The type II secretion system enables gram-negative bacteria to secrete exoproteins into the extracellular milieu. We performed biophysical and biochemical experiments to identify systematic interactions between Pseudomonas aeruginosa Xcp type II secretion system components and their substrates. We observed that three Xcp components, XcpP(C), the secretin XcpQ(D), and the pseudopilus tip, directly and specifically interact with secreted exoproteins. We established that XcpP(C), in addition to its interaction with the substrate, likely shields the entire periplasmic portion of the secreton. It can therefore be considered as the recruiter of the machinery. Moreover, the direct interaction observed between the substrate and the pseudopilus tip validates the piston model hypothesis, in which the pseudopilus pushes the substrate through the secretin pore during the secretion process. All together, our results allowed us to propose a model of the different consecutive steps followed by the substrate during the type II secretion process.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mapeamento de Interação de Proteínas , Pseudomonas aeruginosa/metabolismo , Via Secretória , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Elastase Pancreática/metabolismo , Periplasma/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/enzimologia
15.
J Biol Chem ; 286(27): 24407-16, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21586577

RESUMO

In gram-negative bacteria, type II secretion systems assemble a piston-like structure, called pseudopilus, which expels exoproteins out of the cell. The pseudopilus is constituted by a major pseudopilin that when overproduced multimerizes into a long cell surface structure named hyper-pseudopilus. Pseudomonas aeruginosa possesses two type II secretion systems, Xcp and Hxc. Although major pseudopilins are exchangeable among type II secretion systems, we show that XcpT and HxcT are not. We demonstrate that HxcT does not form a hyper-pseudopilus and is different in amino acid sequence and multimerization properties. Using structure-based mutagenesis, we observe that five mutations are sufficient to revert HxcT into a functional XcpT-like protein, which also becomes capable of forming a hyper-pseudopilus. Phylogenetic and experimental analysis showed that the whole Hxc system was acquired by P. aeruginosa PAO1 and other Pseudomonas species through horizontal gene transfer. We thus identified a new type II secretion subfamily, of which the P. aeruginosa Hxc system is the archetype. This finding demonstrates how similar bacterial machineries evolve toward distinct mechanisms that may contribute specific functions.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos/fisiologia , Evolução Molecular , Transferência Genética Horizontal/fisiologia , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
16.
Structure ; 30(6): 790-792, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35660242

RESUMO

Conjugative transfer is mediated by specialized type IV secretion systems (T4SSs). However, their architecture and mode of function remain poorly defined in Gram-positives. In this issue of Structure, Jäger et al. reveal an exclusive assembly of PrgL and illustrate the importance of its structural organization in pCF10 conjugative transfer.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo IV , Proteínas de Bactérias/química , Plasmídeos , Sistemas de Secreção Tipo IV/química
17.
Acta Crystallogr D Struct Biol ; 78(Pt 8): 1064-1078, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916229

RESUMO

Pseudomonas aeruginosa secretes diverse proteins via its type 2 secretion system, including a 39 kDa chitin-binding protein, CbpD. CbpD has recently been shown to be a lytic polysaccharide monooxygenase active on chitin and to contribute substantially to virulence. To date, no structure of this virulence factor has been reported. Its first two domains are homologous to those found in the crystal structure of Vibrio cholerae GbpA, while the third domain is homologous to the NMR structure of the CBM73 domain of Cellvibrio japonicus CjLPMO10A. Here, the 3.0 Šresolution crystal structure of CbpD solved by molecular replacement is reported, which required ab initio models of each CbpD domain generated by the artificial intelligence deep-learning structure-prediction algorithm RoseTTAFold. The structure of CbpD confirms some previously reported substrate-specificity motifs among LPMOAA10s, while challenging the predictive power of others. Additionally, the structure of CbpD shows that post-translational modifications occur on the chitin-binding surface. Moreover, the structure raises interesting possibilities about how type 2 secretion-system substrates may interact with the secretion machinery and demonstrates the utility of new artificial intelligence protein structure-prediction algorithms in making challenging structural targets tractable.


Assuntos
Quitina , Oxigenases de Função Mista , Inteligência Artificial , Proteínas de Bactérias/química , Quitina/metabolismo , Oxigenases de Função Mista/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Especificidade por Substrato
18.
J Biol Chem ; 285(44): 34168-80, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20610396

RESUMO

Maurocalcine has been the first demonstrated animal toxin acting as a cell-penetrating peptide. Although it possesses competitive advantages, its use as a cell-penetrating peptide (CPP) requires that analogues be developed that lack its characteristic pharmacological activity on ryanodine-sensitive calcium channels without affecting its cell-penetrating and vector efficiencies. Here, we present the synthesis, three-dimensional (1)H NMR structure, and activity of D-maurocalcine. We demonstrate that it possesses all of the desired features for an excellent CPP: preserved structure, lack of pharmacological action, conserved vector properties, and absence of cell toxicity. This is the first report of a folded/oxidized animal toxin in its D-diastereomer conformation for use as a CPP. The protease resistance of this new peptide analogue, combined with its efficient cell penetration at concentrations devoid of cell toxicity, suggests that D-maurocalcine should be an excellent vector for in vivo applications.


Assuntos
Peptídeos/química , Venenos de Escorpião/química , Animais , Células CHO , Canais de Cálcio/química , Membrana Celular/metabolismo , Dicroísmo Circular , Cricetinae , Cricetulus , Fluoresceínas/química , Espectroscopia de Ressonância Magnética/métodos , Microscopia Confocal/métodos , Peptídeo Hidrolases/química , Rianodina/química , Venenos de Escorpião/farmacologia , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
19.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 2): 124-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21245534

RESUMO

Pseudomonas aeruginosa utilizes the type II secretion machinery to transport virulence factors through the outer membrane into the extracellular space. Five proteins in the type II secretion system share sequence homology with pilin subunits of type IV pili and are called the pseudopilins. The major pseudopilin XcpT(G) assembles into an intraperiplasmic pilus and is thought to act in a piston-like manner to push substrates through an outer membrane secretin. The other four minor pseudopilins, XcpU(H), XcpV(I), XcpW(J) and XcpX(K), play less well defined roles in pseudopilus formation. It was recently discovered that these four minor pseudopilins form a quaternary complex that is presumed to initiate the formation of the pseudopilus and to localize to its tip. Here, the structure of XcpW(J) was refined to 1.85 Šresolution. The structure revealed the type IVa pilin fold with an embellished variable antiparallel ß-sheet as also found in the XcpW(J) homologue enterotoxigenic Escherichia coli GspJ(W) and the XcpU(H) homologue Vibrio cholerae EpsU(H). It is proposed that the exposed surface of this sheet may cradle the long N-terminal α1 helix of another pseudopilin. The final 31 amino acids of the XcpW(J) structure are instrinsically disordered. Deletion of this unstructured region of XcpW(J) did not prevent type II secretion in vivo.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Pseudomonas aeruginosa/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
20.
Front Mol Biosci ; 8: 642606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816557

RESUMO

Conjugative transfer is a major threat to global health since it contributes to the spread of antibiotic resistance genes and virulence factors among commensal and pathogenic bacteria. To allow their transfer, mobile genetic elements including Integrative and Conjugative Elements (ICEs) use a specialized conjugative apparatus related to Type IV secretion systems (Conj-T4SS). Therefore, Conj-T4SSs are excellent targets for strategies that aim to limit the spread of antibiotic resistance. In this study, we combined structural, biochemical and biophysical approaches to study OrfG, a protein that belongs to Conj-T4SS of ICESt3 from Streptococcus thermophilus. Structural analysis of OrfG by X-ray crystallography revealed that OrfG central domain is similar to VirB8-like proteins but displays a different quaternary structure in the crystal. To understand, at a structural level, the common and the diverse features between VirB8-like proteins from both Gram-negative and -positive bacteria, we used an in silico structural alignment method that allowed us to identify different structural classes of VirB8-like proteins. Biochemical and biophysical characterizations of purified OrfG soluble domain and its central and C-terminal subdomains indicated that they are mainly monomeric in solution but able to form an unprecedented 6-mer oligomers. Our study provides new insights into the structural analysis of VirB8-like proteins and discusses the interplay between tertiary and quaternary structures of these proteins as an essential component of the conjugative transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA