Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Metab ; 79: 101858, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141847

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) affects 1 in 3 adults and contributes to advanced liver injury and cardiometabolic disease. While recent evidence points to involvement of the brain in NAFLD, the downstream neural circuits and neuronal molecular mechanisms involved in this response, remain unclear. Here, we investigated the role of a unique forebrain-hypothalamic circuit in NAFLD. METHODS: Chemogenetic activation and inhibition of circumventricular subfornical organ (SFO) neurons that project to the paraventricular nucleus of the hypothalamus (PVN; SFO→PVN) in mice were used to study the role of SFO→PVN signaling in NAFLD. Novel scanning electron microscopy techniques, histological approaches, molecular biology techniques, and viral methodologies were further used to delineate the role of endoplasmic reticulum (ER) stress within this circuit in driving NAFLD. RESULTS: In lean animals, acute chemogenetic activation of SFO→PVN neurons was sufficient to cause hepatic steatosis in a liver sympathetic nerve dependent manner. Conversely, inhibition of this forebrain-hypothalamic circuit rescued obesity-associated NAFLD. Furthermore, dietary NAFLD is associated with marked ER ultrastructural alterations and ER stress in the PVN, which was blunted following reductions in excitatory signaling from the SFO. Finally, selective inhibition of PVN ER stress reduced hepatic steatosis during obesity. CONCLUSIONS: Collectively, these findings characterize a previously unrecognized forebrain-hypothalamic-ER stress circuit that is involved in hepatic steatosis, which may point to future therapeutic strategies for NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Obesidade , Núcleo Hipotalâmico Paraventricular/fisiologia , Sistema Nervoso Simpático
2.
Metabolites ; 11(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34436435

RESUMO

The central nervous system is critical in metabolic regulation, and accumulating evidence points to a distributed network of brain regions involved in energy homeostasis. This is accomplished, in part, by integrating peripheral and central metabolic information and subsequently modulating neuroendocrine outputs through the paraventricular and supraoptic nucleus of the hypothalamus. However, these hypothalamic nuclei are generally protected by a blood-brain-barrier limiting their ability to directly sense circulating metabolic signals-pointing to possible involvement of upstream brain nuclei. In this regard, sensory circumventricular organs (CVOs), brain sites traditionally recognized in thirst/fluid and cardiovascular regulation, are emerging as potential sites through which circulating metabolic substances influence neuroendocrine control. The sensory CVOs, including the subfornical organ, organum vasculosum of the lamina terminalis, and area postrema, are located outside the blood-brain-barrier, possess cellular machinery to sense the metabolic interior milieu, and establish complex neural networks to hypothalamic neuroendocrine nuclei. Here, evidence for a potential role of sensory CVO-hypothalamic neuroendocrine networks in energy homeostasis is presented.

3.
Front Mol Neurosci ; 11: 289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197585

RESUMO

Calcitonin gene-related peptide (CGRP) is a neuroactive peptide that is thought to play a role at efferent synapses in hair cell organs including the cochlea, lateral line, and semicircular canal. The deletion of CGRP in transgenic mice is associated with a significant reduction in suprathreshold cochlear nerve activity and vestibulo-ocular reflex (VOR) gain efficacy when compared to littermate controls. Here we asked whether the loss of CGRP also influences otolithic end organ function and contributes to balance impairments. Immunostaining for CGRP was absent in the otolithic end organs of αCGRP null (-/-) mice while choline acetyltransferase (ChAT) immunolabeling appeared unchanged suggesting the overall gross development of efferent innervation in otolithic organs was unaltered. Otolithic function was assessed by quantifying the thresholds, suprathreshold amplitudes, and latencies of vestibular sensory-evoked potentials (VsEPs) while general balance function was assessed using a modified rotarod assay. The loss of αCGRP in null (-/-) mice was associated with: (1) shorter VsEP latencies without a concomitant change in amplitude or thresholds, and (2) deficits in the rotarod balance assay. Our findings show that CGRP loss results in faster otolith afferent activation timing, suggesting that the CGRP component of the efferent vestibular system (EVS) also plays a role in otolithic organ dynamics, which when coupled with reduced VOR gain efficacy, impairs balance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA