Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 22(11): 713-732, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34257452

RESUMO

Neuromuscular disorders comprise a diverse group of human inborn diseases that arise from defects in the structure and/or function of the muscle tissue - encompassing the muscle cells (myofibres) themselves and their extracellular matrix - or muscle fibre innervation. Since the identification in 1987 of the first genetic lesion associated with a neuromuscular disorder - mutations in dystrophin as an underlying cause of Duchenne muscular dystrophy - the field has made tremendous progress in understanding the genetic basis of these diseases, with pathogenic variants in more than 500 genes now identified as underlying causes of neuromuscular disorders. The subset of neuromuscular disorders that affect skeletal muscle are referred to as myopathies or muscular dystrophies, and are due to variants in genes encoding muscle proteins. Many of these proteins provide structural stability to the myofibres or function in regulating sarcolemmal integrity, whereas others are involved in protein turnover, intracellular trafficking, calcium handling and electrical excitability - processes that ensure myofibre resistance to stress and their primary activity in muscle contraction. In this Review, we discuss how defects in muscle proteins give rise to muscle dysfunction, and ultimately to disease, with a focus on pathologies that are most common, best understood and that provide the most insight into muscle biology.


Assuntos
Distrofina/genética , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Doenças Neuromusculares/genética , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Mutação/genética , Doenças Neuromusculares/patologia
2.
Nature ; 618(7963): 102-109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225985

RESUMO

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Assuntos
Antinematódeos , Tylenchoidea , Animais , Humanos , Antinematódeos/química , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Doenças das Plantas , Especificidade da Espécie , Especificidade por Substrato
3.
Hum Mol Genet ; 33(12): 1036-1054, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493359

RESUMO

Nemaline myopathy (NM) is a rare congenital neuromuscular disorder characterized by muscle weakness and hypotonia, slow gross motor development, and decreased respiratory function. Mutations in at least twelve genes, all of each encode proteins that are either components of the muscle thin filament or regulate its length and stability, have been associated with NM. Mutations in Nebulin (NEB), a giant filamentous protein localized in the sarcomere, account for more than 50% of NM cases. At present, there remains a lack of understanding of whether NEB genotype influences nebulin function and NM-patient phenotypes. In addition, there is a lack of therapeutically tractable models that can enable drug discovery and address the current unmet treatment needs of patients. To begin to address these gaps, here we have characterized five new zebrafish models of NEB-related NM. These mutants recapitulate most aspects of NEB-based NM, showing drastically reduced survival, defective muscle structure, reduced contraction force, shorter thin filaments, presence of electron-dense structures in myofibers, and thickening of the Z-disks. This study represents the first extensive investigation of an allelic series of nebulin mutants, and thus provides an initial examination in pre-clinical models of potential genotype-phenotype correlations in human NEB patients. It also represents the first utilization of a set of comprehensive outcome measures in zebrafish, including correlation between molecular analyses, structural and biophysical investigations, and phenotypic outcomes. Therefore, it provides a rich source of data for future studies exploring the NM pathomechanisms, and an ideal springboard for therapy identification and development for NEB-related NM.


Assuntos
Alelos , Modelos Animais de Doenças , Proteínas Musculares , Músculo Esquelético , Mutação , Miopatias da Nemalina , Fenótipo , Sarcômeros , Peixe-Zebra , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Miopatias da Nemalina/fisiopatologia , Peixe-Zebra/genética , Animais , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sarcômeros/genética , Sarcômeros/metabolismo , Sarcômeros/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Humanos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Hum Mol Genet ; 33(3): 254-269, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37930228

RESUMO

CACNA1S-related myopathy, due to pathogenic variants in the CACNA1S gene, is a recently described congenital muscle disease. Disease associated variants result in loss of gene expression and/or reduction of Cav1.1 protein stability. There is an incomplete understanding of the underlying disease pathomechanisms and no effective therapies are currently available. A barrier to the study of this myopathy is the lack of a suitable animal model that phenocopies key aspects of the disease. To address this barrier, we generated knockouts of the two zebrafish CACNA1S paralogs, cacna1sa and cacna1sb. Double knockout fish exhibit severe weakness and early death, and are characterized by the absence of Cav1.1 α1 subunit expression, abnormal triad structure, and impaired excitation-contraction coupling, thus mirroring the severe form of human CACNA1S-related myopathy. A double mutant (cacna1sa homozygous, cacna1sb heterozygote) exhibits normal development, but displays reduced body size, abnormal facial structure, and cores on muscle pathologic examination, thus phenocopying the mild form of human CACNA1S-related myopathy. In summary, we generated and characterized the first cacna1s zebrafish loss-of-function mutants, and show them to be faithful models of severe and mild forms of human CACNA1S-related myopathy suitable for future mechanistic studies and therapy development.


Assuntos
Canais de Cálcio Tipo L , Doenças Musculares , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/patologia , Mutação , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
5.
Am J Hum Genet ; 110(5): 895-900, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36990084

RESUMO

Genome sequencing (GS) is a powerful test for the diagnosis of rare genetic disorders. Although GS can enumerate most non-coding variation, determining which non-coding variants are disease-causing is challenging. RNA sequencing (RNA-seq) has emerged as an important tool to help address this issue, but its diagnostic utility remains understudied, and the added value of a trio design is unknown. We performed GS plus RNA-seq from blood using an automated clinical-grade high-throughput platform on 97 individuals from 39 families where the proband was a child with unexplained medical complexity. RNA-seq was an effective adjunct test when paired with GS. It enabled clarification of putative splice variants in three families, but it did not reveal variants not already identified by GS analysis. Trio RNA-seq decreased the number of candidates requiring manual review when filtering for de novo dominant disease-causing variants, allowing for the exclusion of 16% of gene-expression outliers and 27% of allele-specific-expression outliers. However, clear diagnostic benefit from the trio design was not observed. Blood-based RNA-seq can facilitate genome analysis in children with suspected undiagnosed genetic disease. In contrast to DNA sequencing, the clinical advantages of a trio RNA-seq design may be more limited.


Assuntos
Família , Doenças Raras , Humanos , Criança , Sequência de Bases , Análise de Sequência de DNA , Sequenciamento do Exoma , Doenças Raras/genética , Análise de Sequência de RNA
6.
Hum Mol Genet ; 32(9): 1575-1588, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36637428

RESUMO

Folic acid (synthetic folate, FA) is consumed in excess in North America and may interact with common pathogenic variants in methylenetetrahydrofolate reductase (MTHFR); the most prevalent inborn error of folate metabolism with wide-ranging obesity-related comorbidities. While preclinical murine models have been valuable to inform on diet-gene interactions, a recent Folate Expert panel has encouraged validation of new animal models. In this study, we characterized a novel zebrafish model of mthfr deficiency and evaluated the effects of genetic loss of mthfr function and FA supplementation during embryonic development on energy homeostasis and metabolism. mthfr-deficient zebrafish were generated using CRISPR mutagenesis and supplemented with no FA (control, 0FA) or 100 µm FA (100FA) throughout embryonic development (0-5 days postfertilization). We show that the genetic loss of mthfr function in zebrafish recapitulates key biochemical hallmarks reported in MTHFR deficiency in humans and leads to greater lipid accumulation and aberrant cholesterol metabolism as reported in the Mthfr murine model. In mthfr-deficient zebrafish, energy homeostasis was also impaired as indicated by altered food intake, reduced metabolic rate and lower expression of central energy-regulatory genes. Microglia abundance, involved in healthy neuronal development, was also reduced. FA supplementation to control zebrafish mimicked many of the adverse effects of mthfr deficiency, some of which were also exacerbated in mthfr-deficient zebrafish. Together, these findings support the translatability of the mthfr-deficient zebrafish as a preclinical model in folate research.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , Peixe-Zebra , Humanos , Gravidez , Feminino , Camundongos , Animais , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ácido Fólico , Suplementos Nutricionais , Homeostase , Desenvolvimento Embrionário/genética
7.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395208

RESUMO

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Assuntos
Proteína 7 com Repetições F-Box-WD , Transtornos do Neurodesenvolvimento , Ubiquitinação , Proteína 7 com Repetições F-Box-WD/química , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Transtornos do Neurodesenvolvimento/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Hum Mol Genet ; 31(5): 733-747, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34568901

RESUMO

Congenital muscular dystrophy type 1A (MDC1A), the most common congenital muscular dystrophy in Western countries, is caused by recessive mutations in LAMA2, the gene encoding laminin alpha 2. Currently, no cure or disease modifying therapy has been successfully developed for MDC1A. Examination of patient muscle biopsies revealed altered distribution of lysosomes. We hypothesized that this redistribution was a novel and potentially druggable aspect of disease pathogenesis. We explored this hypothesis using candyfloss (caf), a zebrafish model of MDC1A. We found that lysosome distribution in caf zebrafish was also abnormal. This altered localization was significantly associated with fiber detachment and could be prevented by blocking myofiber detachment. Overexpression of transcription factor EB, a transcription factor that promotes lysosomal biogenesis, led to increased lysosome content and decreased fiber detachment. We conclude that genetic manipulation of the lysosomal compartment is able to alter the caf zebrafish disease process, suggesting that lysosome function may be a target for disease modification.


Assuntos
Distrofias Musculares , Peixe-Zebra , Animais , Humanos , Laminina/genética , Lisossomos/genética , Lisossomos/patologia , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Fatores de Transcrição , Peixe-Zebra/genética
9.
Genet Med ; 26(2): 101012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924259

RESUMO

PURPOSE: To evaluate the diagnostic utility of publicly funded clinical exome sequencing (ES) for patients with suspected rare genetic diseases. METHODS: We prospectively enrolled 297 probands who met eligibility criteria and received ES across 5 sites in Ontario, Canada, and extracted data from medical records and clinician surveys. Using the Fryback and Thornbury Efficacy Framework, we assessed diagnostic accuracy by examining laboratory interpretation of results and assessed diagnostic thinking by examining the clinical interpretation of results and whether clinical-molecular diagnoses would have been achieved via alternative hypothetical molecular tests. RESULTS: Laboratories reported 105 molecular diagnoses and 165 uncertain results in known and novel genes. Of these, clinicians interpreted 102 of 105 (97%) molecular diagnoses and 6 of 165 (4%) uncertain results as clinical-molecular diagnoses. The 108 clinical-molecular diagnoses were in 104 families (35% diagnostic yield). Each eligibility criteria resulted in diagnostic yields of 30% to 40%, and higher yields were achieved when >2 eligibility criteria were met (up to 45%). Hypothetical tests would have identified 61% of clinical-molecular diagnoses. CONCLUSION: We demonstrate robustness in eligibility criteria and high clinical validity of laboratory results from ES testing. The importance of ES was highlighted by the potential 40% of patients that would have gone undiagnosed without this test.


Assuntos
Exoma , Doenças Raras , Humanos , Estudos Prospectivos , Sequenciamento do Exoma , Doenças Raras/diagnóstico , Doenças Raras/genética , Testes Genéticos/métodos , Ontário
10.
Brain ; 146(6): 2285-2297, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477332

RESUMO

The blood-brain barrier ensures CNS homeostasis and protection from injury. Claudin-5 (CLDN5), an important component of tight junctions, is critical for the integrity of the blood-brain barrier. We have identified de novo heterozygous missense variants in CLDN5 in 15 unrelated patients who presented with a shared constellation of features including developmental delay, seizures (primarily infantile onset focal epilepsy), microcephaly and a recognizable pattern of pontine atrophy and brain calcifications. All variants clustered in one subregion/domain of the CLDN5 gene and the recurrent variants demonstrate genotype-phenotype correlations. We modelled both patient variants and loss of function alleles in the zebrafish to show that the variants analogous to those in patients probably result in a novel aberrant function in CLDN5. In total, human patient and zebrafish data provide parallel evidence that pathogenic sequence variants in CLDN5 cause a novel neurodevelopmental disorder involving disruption of the blood-brain barrier and impaired neuronal function.


Assuntos
Microcefalia , Animais , Humanos , Microcefalia/genética , Claudina-5/genética , Claudina-5/metabolismo , Peixe-Zebra/metabolismo , Barreira Hematoencefálica/metabolismo , Convulsões/genética , Síndrome
11.
Genet Med ; 25(8): 100863, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37125634

RESUMO

PURPOSE: Bone morphogenic proteins (BMPs) regulate gene expression that is related to many critical developmental processes, including osteogenesis for which they are named. In addition, BMP2 is widely expressed in cells of mesenchymal origin, including bone, cartilage, skeletal and cardiac muscle, and adipose tissue. It also participates in neurodevelopment by inducing differentiation of neural stem cells. In humans, BMP2 variants result in a multiple congenital anomaly syndrome through a haploinsufficiency mechanism. We sought to expand the phenotypic spectrum and highlight phenotypes of patients harboring monoallelic missense variants in BMP2. METHODS: We used retrospective chart review to examine phenotypes from an international cohort of 18 individuals and compared these with published cases. Patient-derived missense variants were modeled in zebrafish to examine their effect on the ability of bmp2b to promote embryonic ventralization. RESULTS: The presented cases recapitulated existing descriptions of BMP2-related disorders, including craniofacial, cardiac, and skeletal anomalies and exhibit a wide phenotypic spectrum. We also identified patients with neural tube defects, structural brain anomalies, and endocrinopathies. Missense variants modeled in zebrafish resulted in loss of protein function. CONCLUSION: We use this expansion of reported phenotypes to suggest multidisciplinary medical monitoring and management of patients with BMP2-related skeletal dysplasia spectrum.


Assuntos
Osteocondrodisplasias , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Estudos Retrospectivos , Diferenciação Celular , Osteogênese/genética , Proteínas Morfogenéticas Ósseas , Proteína Morfogenética Óssea 2/genética
12.
Clin Genet ; 103(3): 288-300, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36353900

RESUMO

We examined the utility of clinical and research processes in the reanalysis of publicly-funded clinical exome sequencing data in Ontario, Canada. In partnership with eight sites, we recruited 287 families with suspected rare genetic diseases tested between 2014 and 2020. Data from seven laboratories was reanalyzed with the referring clinicians. Reanalysis of clinically relevant genes identified diagnoses in 4% (13/287); four were missed by clinical testing. Translational research methods, including analysis of novel candidate genes, identified candidates in 21% (61/287). Of these, 24 families have additional evidence through data sharing to support likely diagnoses (8% of cohort). This study indicates few diagnoses are missed by clinical laboratories, the incremental gain from reanalysis of clinically-relevant genes is modest, and the highest yield comes from validation of novel disease-gene associations. Future implementation of translational research methods, including continued reporting of compelling genes of uncertain significance by clinical laboratories, should be considered to maximize diagnoses.


Assuntos
Testes Genéticos , Humanos , Testes Genéticos/métodos , Ontário/epidemiologia , Sequenciamento do Exoma
13.
Bioorg Med Chem Lett ; 91: 129352, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270074

RESUMO

Spleen tyrosine kinase (SYK) is a non-receptor cytoplasmic kinase. Due to its pivotal role in B cell receptor and Fc-receptor signalling, inhibition of SYK has been a target of interest in a variety of diseases. Herein, we report the use of structure-based drug design to discover a series of potent macrocyclic inhibitors of SYK, with excellent kinome selectivity and in vitro metabolic stability. We were able to remove hERG inhibition through the optimization of physical properties, and utilized a pro-drug strategy to address permeability challenges.


Assuntos
Proteínas Tirosina Quinases , Transdução de Sinais , Quinase Syk , Inibidores de Proteínas Quinases/farmacologia
14.
Am J Hum Genet ; 104(3): 466-483, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827497

RESUMO

Gene-panel and whole-exome analyses are now standard methodologies for mutation detection in Mendelian disease. However, the diagnostic yield achieved is at best 50%, leaving the genetic basis for disease unsolved in many individuals. New approaches are thus needed to narrow the diagnostic gap. Whole-genome sequencing is one potential strategy, but it currently has variant-interpretation challenges, particularly for non-coding changes. In this study we focus on transcriptome analysis, specifically total RNA sequencing (RNA-seq), by using monogenetic neuromuscular disorders as proof of principle. We examined a cohort of 25 exome and/or panel "negative" cases and provided genetic resolution in 36% (9/25). Causative mutations were identified in coding and non-coding exons, as well as in intronic regions, and the mutational pathomechanisms included transcriptional repression, exon skipping, and intron inclusion. We address a key barrier of transcriptome-based diagnostics: the need for source material with disease-representative expression patterns. We establish that blood-based RNA-seq is not adequate for neuromuscular diagnostics, whereas myotubes generated by transdifferentiation from an individual's fibroblasts accurately reflect the muscle transcriptome and faithfully reveal disease-causing mutations. Our work confirms that RNA-seq can greatly improve diagnostic yield in genetically unresolved cases of Mendelian disease, defines strengths and challenges of the technology, and demonstrates the suitability of cell models for RNA-based diagnostics. Our data set the stage for development of RNA-seq as a powerful clinical diagnostic tool that can be applied to the large population of individuals with undiagnosed, rare diseases and provide a framework for establishing minimally invasive strategies for doing so.


Assuntos
Marcadores Genéticos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Musculares/diagnóstico , Mutação , Doenças Raras/diagnóstico , Adolescente , Adulto , Células Cultivadas , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Doenças Musculares/genética , Doenças Raras/genética , Transcriptoma , Adulto Jovem
15.
Am J Hum Genet ; 104(6): 1210-1222, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079897

RESUMO

We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.


Assuntos
Proteínas de Ligação a DNA/genética , Epilepsia/etiologia , Variação Genética , Heterozigoto , Transtornos do Neurodesenvolvimento/etiologia , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/patologia , Feminino , Haploinsuficiência , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo , Adulto Jovem
16.
Genet Med ; 24(11): 2399-2407, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36083289

RESUMO

PURPOSE: RABGAP1 is a GTPase-activating protein implicated in a variety of cellular and molecular processes, including mitosis, cell migration, vesicular trafficking, and mTOR signaling. There are no known Mendelian diseases caused by variants in RABGAP1. METHODS: Through GeneMatcher, we identified 5 patients from 3 unrelated families with homozygous variants in the RABGAP1 gene found on exome sequencing. We established lymphoblastoid cells lines derived from an affected individual and her parents and performed RNA sequencing and functional studies. Rabgap1 knockout mice were generated and phenotyped. RESULTS: We report 5 patients presenting with a common constellation of features, including global developmental delay/intellectual disability, microcephaly, bilateral sensorineural hearing loss, and seizures, as well as overlapping dysmorphic features. Neuroimaging revealed common features, including delayed myelination, white matter volume loss, ventriculomegaly, and thinning of the corpus callosum. Functional analysis of patient cells revealed downregulated mTOR signaling and abnormal localization of early endosomes and lysosomes. Rabgap1 knockout mice exhibited several features in common with the patient cohort, including microcephaly, thinning of the corpus callosum, and ventriculomegaly. CONCLUSION: Collectively, our results provide evidence of a novel neurodevelopmental syndrome caused by biallelic loss-of-function variants in RABGAP1.


Assuntos
Hidrocefalia , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Feminino , Humanos , Microcefalia/genética , Linhagem , Deficiência Intelectual/genética , Síndrome , Camundongos Knockout , Serina-Treonina Quinases TOR , Transtornos do Neurodesenvolvimento/genética
17.
Acta Neuropathol ; 144(3): 537-563, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35844027

RESUMO

X-linked myotubular myopathy (XLMTM) is a fatal neuromuscular disorder caused by loss of function mutations in MTM1. At present, there are no directed therapies for XLMTM, and incomplete understanding of disease pathomechanisms. To address these knowledge gaps, we performed a drug screen in mtm1 mutant zebrafish and identified four positive hits, including valproic acid, which functions as a potent suppressor of the mtm1 zebrafish phenotype via HDAC inhibition. We translated these findings to a mouse XLMTM model, and showed that valproic acid ameliorates the murine phenotype. These observations led us to interrogate the epigenome in Mtm1 knockout mice; we found increased DNA methylation, which is normalized with valproic acid, and likely mediated through aberrant 1-carbon metabolism. Finally, we made the unexpected observation that XLMTM patients share a distinct DNA methylation signature, suggesting that epigenetic alteration is a conserved disease feature amenable to therapeutic intervention.


Assuntos
Miopatias Congênitas Estruturais , Peixe-Zebra , Animais , Modelos Animais de Doenças , Epigênese Genética , Camundongos , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/tratamento farmacológico , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ácido Valproico/metabolismo , Ácido Valproico/farmacologia , Peixe-Zebra/metabolismo
18.
Hum Mol Genet ; 28(24): 4186-4196, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31691805

RESUMO

Dynamin 2 (DNM2) encodes a ubiquitously expressed large GTPase with membrane fission capabilities that participates in the endocytosis of clathrin-coated vesicles. Heterozygous mutations in DNM2 are associated with two distinct neuromuscular disorders, Charcot-Marie-Tooth disease (CMT) and autosomal dominant centronuclear myopathy (CNM). Despite extensive investigations in cell culture, the role of dynamin 2 in normal muscle development is poorly understood and the consequences of DNM2 mutations at the molecular level in vivo are not known. To address these gaps in knowledge, we developed transgenic zebrafish expressing either wild-type dynamin 2 or dynamin 2 with either a CNM or CMT mutation. Taking advantage of the live imaging capabilities of the zebrafish embryo, we establish the localization of wild-type and mutant dynamin 2 in vivo, showing for the first time distinctive dynamin 2 subcellular compartments. Additionally, we demonstrate that CNM-related DNM2 mutations are associated with protein mislocalization and aggregation. Lastly, we define core phenotypes associated with our transgenic mutant fish, including impaired motor function and altered muscle ultrastructure, making them the ideal platform for drug screening. Overall, using the power of the zebrafish, we establish novel insights into dynamin 2 localization and dynamics and provide the necessary groundwork for future studies examining dynamin 2 pathomechanisms and therapy development.


Assuntos
Dinamina II/genética , Dinamina II/metabolismo , Mutação , Animais , Animais Geneticamente Modificados , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Modelos Animais de Doenças , Endocitose , Heterozigoto , Humanos , Músculo Esquelético/metabolismo , Doenças Neuromusculares/genética , Doenças Neuromusculares/metabolismo , Fenótipo , Ativação Transcricional , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
Hum Mol Genet ; 28(18): 3024-3036, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31107960

RESUMO

Ryanodine receptor type I (RYR1)-related myopathies (RYR1 RM) are a clinically and histopathologically heterogeneous group of conditions that represent the most common subtype of childhood onset non-dystrophic muscle disorders. There are no treatments for this severe group of diseases. A major barrier to therapy development is the lack of an animal model that mirrors the clinical severity of pediatric cases of the disease. To address this, we used CRISPR/Cas9 gene editing to generate a novel recessive mouse model of RYR1 RM. This mouse (Ryr1TM/Indel) possesses a patient-relevant point mutation (T4706M) engineered into 1 allele and a 16 base pair frameshift deletion engineered into the second allele. Ryr1TM/Indel mice exhibit an overt phenotype beginning at 14 days of age that consists of reduced body/muscle mass and myofibre hypotrophy. Ryr1TM/Indel mice become progressively inactive from that point onward and die at a median age of 42 days. Histopathological assessment shows myofibre hypotrophy, increased central nuclei and decreased triad number but no clear evidence of metabolic cores. Biochemical analysis reveals a marked decrease in RYR1 protein levels (20% of normal) as compared to only a 50% decrease in transcript. Functional studies at end stage show significantly reduced electrically evoked Ca2+ release and force production. In summary, Ryr1TM/Indel mice exhibit a post-natal lethal recessive form of RYR1 RM that pheno-copies the severe congenital clinical presentation seen in a subgroup of RYR1 RM children. Thus, Ryr1TM/Indel mice represent a powerful model for both establishing the pathomechanisms of recessive RYR1 RM and pre-clinical testing of therapies for efficacy.


Assuntos
Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Doenças Musculares/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Cálcio/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Edição de Genes , Regulação da Expressão Gênica , Marcação de Genes , Loci Gênicos , Genótipo , Mutação INDEL , Isoflurano/farmacologia , Camundongos , Camundongos Transgênicos , Força Muscular/genética , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Doenças Musculares/diagnóstico , Doenças Musculares/metabolismo , Mutação , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Índice de Gravidade de Doença
20.
Curr Opin Neurol ; 34(5): 727-737, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34267051

RESUMO

PURPOSE OF REVIEW: There has been an explosion of advancement in the field of genetic therapies. The first gene-based treatments are now in clinical practice, with several additional therapeutic programs in various stages of development. Novel technologies are being developed that will further advance the breadth and success of genetic medicine.Congenital myopathies are an important group of neuromuscular disorders defined by structural changes in the muscle and characterized by severe clinical symptoms caused by muscle weakness. At present, there are no approved drug therapies for any subtype of congenital myopathy.In this review, we present an overview of genetic therapies and discuss their application to congenital myopathies. RECENT FINDINGS: Several candidate therapeutics for congenital myopathies are in the development pipeline, including ones in clinical trial. These include genetic medicines such as gene replacement therapy and antisense oligonucleotide-based gene knockdown. We highlight the programs related to genetic medicine, and also discuss congenital myopathy subtypes where genetic therapy could be applied. SUMMARY: Genetic therapies are ushering in an era of precision medicine for neurological diseases. Congenital myopathies are conditions ideally suited for genetic medicine approaches, and the first such therapies will hopefully soon be reaching congenital myopathy patients.


Assuntos
Miopatias Congênitas Estruturais , Terapia Genética , Humanos , Debilidade Muscular , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Oligonucleotídeos Antissenso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA