RESUMO
MicroRNAs (miRNAs) are synonymous with post-transcriptional repression of target genes. A number of studies, however, have reported miRNAs functioning outside this paradigm, and this SnapShot outlines these unconventional ways in which miRNAs can exert regulatory functions. To view this SnapShot, open or download the PDF.
Assuntos
Núcleo Celular/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/metabolismo , Humanos , RNA Mensageiro/genéticaRESUMO
The solid tumour microenvironment includes nerve fibres that arise from the peripheral nervous system1,2. Recent work indicates that newly formed adrenergic nerve fibres promote tumour growth, but the origin of these nerves and the mechanism of their inception are unknown1,3. Here, by comparing the transcriptomes of cancer-associated trigeminal sensory neurons with those of endogenous neurons in mouse models of oral cancer, we identified an adrenergic differentiation signature. We show that loss of TP53 leads to adrenergic transdifferentiation of tumour-associated sensory nerves through loss of the microRNA miR-34a. Tumour growth was inhibited by sensory denervation or pharmacological blockade of adrenergic receptors, but not by chemical sympathectomy of pre-existing adrenergic nerves. A retrospective analysis of samples from oral cancer revealed that p53 status was associated with nerve density, which was in turn associated with poor clinical outcomes. This crosstalk between cancer cells and neurons represents mechanism by which tumour-associated neurons are reprogrammed towards an adrenergic phenotype that can stimulate tumour progression, and is a potential target for anticancer therapy.
Assuntos
Neurônios Adrenérgicos/patologia , Transdiferenciação Celular , Reprogramação Celular , Neoplasias Bucais/patologia , Células Receptoras Sensoriais/patologia , Proteína Supressora de Tumor p53/deficiência , Antagonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/uso terapêutico , Animais , Divisão Celular , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Fibras Nervosas/patologia , Neuritos/patologia , Receptores Adrenérgicos/metabolismo , Estudos Retrospectivos , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
One of the most unexpected discoveries in molecular oncology, in the last decades, was the identification of a new layer of protein coding gene regulation by transcripts that do not codify for proteins, the non-coding RNAs. These represent a heterogeneous category of transcripts that interact with many types of genetic elements, including regulatory DNAs, coding and other non-coding transcripts and directly to proteins. The final outcome, in the malignant context, is the regulation of any of the cancer hallmarks. Non-coding RNAs represent the most abundant type of hormones that contribute significantly to cell-to cell communication, revealing a complex interplay between tumour cells, tumour microenvironment cells and immune cells. Consequently, profiling their abundance in bodily fluids became a mainstream of biomarker identification. Therapeutic targeting of non-coding RNAs represents a new option for clinicians that is currently under development. This review will present the biology and translational value of three of the most studied categories on non-coding RNAs, the microRNAs, the long non-coding RNAs and the circular RNAs. We will also focus on some aspirational concepts that can help in the development of clinical applications related to non-coding RNAs, including using pyknons to discover new non-coding RNAs, targeting human-specific transcripts which are expressed specifically in the tumour cell and using non-coding RNAs to increase the efficiency of immunotherapy.
Assuntos
Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , RNA Longo não Codificante/fisiologia , Neoplasias Gastrointestinais/terapia , Humanos , MicroRNAs/fisiologiaRESUMO
OBJECTIVE: To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. DESIGN: FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. RESULTS: FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. CONCLUSIONS: Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients.
Assuntos
Carcinogênese , Proliferação de Células , Neoplasias Colorretais , Neovascularização Patológica , RNA Longo não Codificante , Fator de Transcrição STAT3/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica , Marcadores Genéticos , Terapia Genética , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Testes Farmacogenômicos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Richter syndrome is the name given to the transformation of the most frequent type of leukemia, chronic lymphocytic leukemia, into an aggressive lymphoma. Patients with Richter syndrome have limited response to therapies and dismal survival. The underlying mechanisms of transformation are insufficiently understood and there is a major lack of knowledge regarding the roles of microRNA that have already proven to be causative for most cases of chronic lymphocytic leukemia. Here, by using four types of genomic platforms and independent sets of patients from three institutions, we identified microRNA involved in the transformation of chronic lymphocytic leukemia to Richter syndrome. The expression signature is composed of miR-21, miR-150, miR-146b and miR-181b, with confirmed targets significantly enriched in pathways involved in cancer, immunity and inflammation. In addition, we demonstrated that genomic alterations may account for microRNA deregulation in a subset of cases of Richter syndrome. Furthermore, network analysis showed that Richter transformation leads to a complete rearrangement, resulting in a highly connected microRNA network. Functionally, ectopic overexpression of miR-21 increased proliferation of malignant B cells in multiple assays, while miR-150 and miR-26a were downregulated in a chronic lymphocytic leukemia xenogeneic mouse transplantation model. Together, our results suggest that Richter transformation is associated with significant expression and genomic loci alterations of microRNA involved in both malignancy and immunity.
Assuntos
Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Leucemia Linfocítica Crônica de Células B/patologia , MicroRNAs/genética , Adulto , Idoso , Animais , Apoptose , Proliferação de Células , Transformação Celular Neoplásica/genética , Feminino , Seguimentos , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Prognóstico , Síndrome , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Molecular bladder cancer (BC) subtypes define distinct biological entities and were shown to predict treatment response in neoadjuvant and adjuvant settings. The extent of intratumoral heterogeneity (ITH) might affect subtyping of individual patients. OBJECTIVE: To comprehensively assess the ITH of molecular subtypes in a cohort of muscle-invasive BC. DESIGN, SETTING, AND PARTICIPANTS: A total of 251 patients undergoing radical cystectomy were screened. Three cores of the tumor center (TC) and three cores of the invasive tumor front (TF) of each patient were assembled in a tissue microarray. Molecular subtypes were determined employing 12 pre-evaluated immunohistochemical markers (FGFR3, CCND1, RB1, CDKN2A, KRT5, KRT14, FOXA1, GATA3, TUBB2B, EPCAM, CDH1, and vimentin). A total of 18 072 spots were evaluated, of which 15 002 spots were assessed based on intensity, distribution, or combination. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Allocation to one of five different molecular subtypes-urothelial like, genomically unstable, small-cell/neuroendocrine like, basal/squamous cell carcinoma like, and mesenchymal like-was conducted for each patient for the complete tumor, individual cores, TF, and TC separately. The primary objective was to assess the ITH between the TF and TC (n = 208 patients). The secondary objective was the evaluation of multiregion ITH (n = 191 patients). An analysis of the composition of ITH cases, association with clinicopathological parameters, and prognosis was conducted. RESULTS AND LIMITATIONS: ITH between the TF and TC was seen in 12.5% (n = 26/208), and ITH defined by at least two different subtypes of any location was seen in 24.6% (n = 47/191). ITH was more frequent in locally confined (pT2) versus advanced (pT ≥3) BC stages (38.7% vs 21.9%, p = 0.046), and pT4 BC presented with significantly more basal subtypes than pT2 BC (26.2% vs 11.5%, p = 0.049). In our cohort, there was no association of subtype ITH with prognosis or accumulation of specific molecular subtypes in ITH cases. The key limitations were missing transcriptomic and mutational genetic validation as well as investigation of ITH beyond subtypes. CONCLUSIONS: Several molecular subtypes can be found in nearly every fourth case of muscle-invasive BC, when using immunohistochemistry. ITH must be given due consideration for subtype-guided strategies in BC. Genomic validation of these results is needed. PATIENT SUMMARY: Different molecular subtypes can be found in many cases of muscle-invasive bladder cancer. This might have implications for individualized, subtype-based therapeutic approaches.
Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/cirurgia , Neoplasias da Bexiga Urinária/patologia , Bexiga Urinária/patologia , Prognóstico , Perfilação da Expressão Gênica/métodos , Músculos/patologiaRESUMO
Heterogeneity of colorectal carcinoma (CRC) represents a major hurdle towards personalized medicine. Efforts based on whole tumor profiling demonstrated that the CRC molecular subtypes were associated with specific tumor morphological patterns representing tumor subregions. We hypothesize that whole-tumor molecular descriptors depend on the morphological heterogeneity with significant impact on current molecular predictors. We investigated intra-tumor heterogeneity by morphology-guided transcriptomics to better understand the links between gene expression and tumor morphology represented by six morphological patterns (morphotypes): complex tubular, desmoplastic, mucinous, papillary, serrated, and solid/trabecular. Whole-transcriptome profiling by microarrays of 202 tumor regions (morphotypes, tumor-adjacent normal tissue, supportive stroma, and matched whole tumors) from 111 stage II-IV CRCs identified morphotype-specific gene expression profiles and molecular programs and differences in their cellular buildup. The proportion of cell types (fibroblasts, epithelial and immune cells) and differentiation of epithelial cells were the main drivers of the observed disparities with activation of EMT and TNF-α signaling in contrast to MYC and E2F targets signaling, defining major gradients of changes at molecular level. Several gene expression-based (including single-cell) classifiers, prognostic and predictive signatures were examined to study their behavior across morphotypes. Most exhibited important morphotype-dependent variability within same tumor sections, with regional predictions often contradicting the whole-tumor classification. The results show that morphotype-based tumor sampling allows the detection of molecular features that would otherwise be distilled in whole tumor profile, while maintaining histopathology context for their interpretation. This represents a practical approach at improving the reproducibility of expression profiling and, by consequence, of gene-based classifiers.
Assuntos
Neoplasias Colorretais , Humanos , Reprodutibilidade dos Testes , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica/métodos , Transcriptoma , Regulação Neoplásica da Expressão GênicaRESUMO
OBJECTIVES: Studies on coronavirus disease 2019 (COVID-19) usually focus on middle-aged and older adults. However, younger patients may present with severe COVID-19 with potentially fatal outcomes. For optimized, more specialized therapeutic regimens in this particular patient group, a better understanding of the underlying pathomechanisms is of utmost importance. METHODS: Our study investigated relevant, pre-existing medical conditions, clinical histories, and autopsy findings, together with SARS-CoV-2-RNA, determined by qPCR, and laboratory data in six COVID-19 decedents aged 50 years or younger, who were autopsied at the Charité University Hospital. RESULTS: From a total of 76 COVID-19 patients who underwent an autopsy at our institution, six (7.9%) were 50 years old or younger. Most of these younger COVID-19 decedents presented with pre-existing medical conditions prior to SARS-CoV-2 infection. These included overweight and obesity, arterial hypertension, asthma, and obstructive sleep apnea, as well as graft-versus-host disease following cancer and bone marrow transplantation. Furthermore, clinical histories and autopsy results revealed a disproportionally high prevalence of thromboembolism and ischemic organ damage in this patient cohort. Histopathology and laboratory results indicated coagulopathies, signs of immune dysregulation, and liver damage. CONCLUSIONS: In conclusion, pre-existing health conditions may increase the risk of severe and fatal COVID-19 in younger patients, who may be especially prone to developing thromboembolic complications, immune dysregulation, and liver damage.