Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nature ; 560(7717): 192-197, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046105

RESUMO

Visceral leishmaniasis causes considerable mortality and morbidity in many parts of the world. There is an urgent need for the development of new, effective treatments for this disease. Here we describe the development of an anti-leishmanial drug-like chemical series based on a pyrazolopyrimidine scaffold. The leading compound from this series (7, DDD853651/GSK3186899) is efficacious in a mouse model of visceral leishmaniasis, has suitable physicochemical, pharmacokinetic and toxicological properties for further development, and has been declared a preclinical candidate. Detailed mode-of-action studies indicate that compounds from this series act principally by inhibiting the parasite cdc-2-related kinase 12 (CRK12), thus defining a druggable target for visceral leishmaniasis.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/enzimologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Terapia de Alvo Molecular , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Quinase 9 Dependente de Ciclina/química , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Simulação de Acoplamento Molecular , Proteoma/efeitos dos fármacos , Proteômica , Pirazóis/química , Pirazóis/uso terapêutico , Pirimidinas/química , Pirimidinas/uso terapêutico , Reprodutibilidade dos Testes , Especificidade por Substrato
3.
Drug Resist Updat ; 67: 100932, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706533

RESUMO

BRCA2 is a well-established cancer driver in several human malignancies. While the remarkable success of PARP inhibitors proved the clinical potential of targeting BRCA deficiencies, the emergence of resistance mechanisms underscores the importance of seeking novel Synthetic Lethal (SL) targets for future drug development efforts. In this work, we performed a BRCA2-centric SL screen with a collection of plant-derived compounds from South America. We identified the steroidal alkaloid Solanocapsine as a selective SL inducer, and we were able to substantially increase its potency by deriving multiple analogs. The use of two complementary chemoproteomic approaches led to the identification of the nucleotide salvage pathway enzyme deoxycytidine kinase (dCK) as Solanocapsine's target responsible for its BRCA2-linked SL induction. Additional confirmatory evidence was obtained by using the highly specific dCK inhibitor (DI-87), which induces SL in multiple BRCA2-deficient and KO contexts. Interestingly, dCK-induced SL is mechanistically different from the one induced by PARP inhibitors. dCK inhibition generates substantially lower levels of DNA damage, and cytotoxic phenotypes are associated exclusively with mitosis, thus suggesting that the fine-tuning of nucleotide supply in mitosis is critical for the survival of BRCA2-deficient cells. Moreover, by using a xenograft model of contralateral tumors, we show that dCK impairment suffices to trigger SL in-vivo. Taken together, our findings unveil dCK as a promising new target for BRCA2-deficient cancers, thus setting the ground for future therapeutic alternatives to PARP inhibitors.


Assuntos
Antineoplásicos , Desoxicitidina Quinase , Humanos , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nucleotídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína BRCA2/genética
4.
Nat Methods ; 16(11): 1087-1093, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31659326

RESUMO

Gene knock outs (KOs) are efficiently engineered through CRISPR-Cas9-induced frameshift mutations. While the efficiency of DNA editing is readily verified by DNA sequencing, a systematic understanding of the efficiency of protein elimination has been lacking. Here we devised an experimental strategy combining RNA sequencing and triple-stage mass spectrometry to characterize 193 genetically verified deletions targeting 136 distinct genes generated by CRISPR-induced frameshifts in HAP1 cells. We observed residual protein expression for about one third of the quantified targets, at variable levels from low to original, and identified two causal mechanisms, translation reinitiation leading to N-terminally truncated target proteins or skipping of the edited exon leading to protein isoforms with internal sequence deletions. Detailed analysis of three truncated targets, BRD4, DNMT1 and NGLY1, revealed partial preservation of protein function. Our results imply that systematic characterization of residual protein expression or function in CRISPR-Cas9-generated KO lines is necessary for phenotype interpretation.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes , Proteínas de Ciclo Celular/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Éxons , Humanos , Mutação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Fatores de Transcrição/genética
5.
Nucleic Acids Res ; 47(22): 11574-11588, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31728527

RESUMO

Epigenetic regulatory mechanisms are central to the development and survival of all eukaryotic organisms. These mechanisms critically depend on the marking of chromatin domains with distinctive histone tail modifications (PTMs) and their recognition by effector protein complexes. Here we used quantitative proteomic approaches to unveil interactions between PTMs and associated reader protein complexes of Plasmodium falciparum, a unicellular parasite causing malaria. Histone peptide pull-downs with the most prominent and/or parasite-specific PTMs revealed the binding preference for 14 putative and novel reader proteins. Amongst others, they highlighted the acetylation-level-dependent recruitment of the BDP1/BDP2 complex and identified an PhD-finger protein (PHD 1, PF3D7_1008100) that could mediate a cross-talk between H3K4me2/3 and H3K9ac marks. Tagging and interaction proteomics of 12 identified proteins unveiled the composition of 5 major epigenetic complexes, including the elusive TBP-associated-factor complex as well as two distinct GCN5/ADA2 complexes. Furthermore, it has highlighted a remarkable degree of interaction between these five (sub)complexes. Collectively, this study provides an extensive inventory of PTM-reader interactions and composition of epigenetic complexes. It will not only fuel further explorations of gene regulation amongst ancient eukaryotes, but also provides a stepping stone for exploration of PTM-reader interactions for antimalarial drug development.


Assuntos
Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Histonas/metabolismo , Plasmodium falciparum/genética , Processamento de Proteína Pós-Traducional/genética , Cromatina/metabolismo , Humanos , Malária Falciparum/genética , Malária Falciparum/parasitologia , Metilação
6.
Anal Chem ; 92(17): 11851-11859, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32867487

RESUMO

OATP2B1, a member of the solute carrier (SLC) transporter family, is an important mechanism of substrate drug uptake in the intestine and liver and therefore a determinant of clinical pharmacokinetics and site of drug-drug interactions. Other SLC transporters have emerged as pharmacology targets. Studies of SLC transporter uptake to-date relied on radioisotope- or fluorescence-labeled reagents or low-throughput quantification of unlabeled compounds in cell lysate. In this study, we developed a cell-based MALDI MS workflow for investigation of OATP2B1 cellular uptake by optimizing the substrate, matrix, matrix-analyte ratio, and matrix application and normalization method. This workflow was automated and applied to characterize substrate transport kinetics and to test 294 top-marketed drugs for OATP2B1 inhibition and quantify inhibitory potencies necessary for extrapolation of clinical drug-drug interaction potential. Intra-assay reproducibility of this MALDI MS method was high (CV < 10%), and results agreed well (83% overlap) with previously published radioisotope assay data. Our results indicate that fast and robust MALDI MS cellular assays could emerge as a high-throughput label-free alternative for direct assessment of drug transporter function in DDIs and toxicities as well as enable drug discovery for transporters as pharmacology targets.


Assuntos
Transportadores de Ânions Orgânicos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Transporte Biológico , Humanos
7.
Mol Pharm ; 17(2): 488-498, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31834804

RESUMO

OATP2B1 is an intestinal and hepatic drug uptake transporter. Intestinal OATP2B1 has been elucidated as the mechanism of unexpected clinical drug-drug interactions (DDIs), where drug exposure was unexpectedly decreased with unchanged half-life. Hepatic OATP2B1 may be an understudied clinical DDI mechanism. The aim of the present work was to understand the prevalence of clinically relevant intestinal and hepatic OATP2B1 inhibitors in marketed drug space. HEK293 cells stably overexpressing human OATP2B1 or vector control were generated and cultured for 72 h in a 96-well format. OATP2B1-mediated uptake of dibromofluorescein (DBF) was found to be optimal at 10 µM concentration and 30 min incubation time. A total of 294 drugs (top 300 marketed drugs, excluding biologics and restricted drugs, supplemented with ∼100 small-molecule drugs) were screened for OATP2B1 inhibition at 10 µM. Drugs demonstrating ≥50% inhibition in this screen were advanced for IC50 determination, which was extrapolated to clinical intestinal and hepatic OATP2B1 inhibition as per 2017 FDA DDI guidance. Of the 294 drugs screened, 67 elicited ≥50% inhibition of OATP2B1-mediated DBF uptake at 10 µM screening concentration. For the 67 drugs flagged in the single-concentration inhibition screen, upon evaluation of a full concentration range, IC50 values could be determined for 58 drugs. OATP2B1 IC50 values established for these 58 drugs were extrapolated as potentially clinically relevant at the intestinal level for 38 orally administered drugs (Igut/IC50 ≥ 10), and 17 were flagged as potential clinical inhibitors of hepatic OATP2B1 uptake (1 + Iin,max,u/IC50 ≥ 1.1). This analysis of 294 drugs demonstrated prevalence of clinically relevant intestinal and hepatic OATP2B1 inhibitors to be 13 and 6%, respectively. As OATP2B1-inhibitor drugs are not exceedingly rare, these results suggest that clinical OATP2B1 DDIs have been rarely observed because OATP2B1 is uncommonly the predominant determinant of drug disposition.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Interações Medicamentosas , Cloridrato de Erlotinib/farmacologia , Fluoresceínas/metabolismo , Células HEK293 , Meia-Vida , Humanos , Concentração Inibidora 50 , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Transfecção
8.
Nat Methods ; 12(12): 1129-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26524241

RESUMO

We extended thermal proteome profiling to detect transmembrane protein-small molecule interactions in cultured human cells. When we assessed the effects of detergents on ATP-binding profiles, we observed shifts in denaturation temperature for ATP-binding transmembrane proteins. We also observed cellular thermal shifts in pervanadate-induced T cell-receptor signaling, delineating the membrane target CD45 and components of the downstream pathway, and with drugs affecting the transmembrane transporters ATP1A1 and MDR1.


Assuntos
Proteínas de Membrana/metabolismo , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Temperatura Alta , Humanos , Células Jurkat , Células K562 , Ligantes , Ligação Proteica , Estabilidade Proteica , Proteoma/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Vanadatos/farmacologia
9.
Nature ; 488(7411): 404-8, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22842901

RESUMO

The jumonji (JMJ) family of histone demethylases are Fe2+- and α-ketoglutarate-dependent oxygenases that are essential components of regulatory transcriptional chromatin complexes. These enzymes demethylate lysine residues in histones in a methylation-state and sequence-specific context. Considerable effort has been devoted to gaining a mechanistic understanding of the roles of histone lysine demethylases in eukaryotic transcription, genome integrity and epigenetic inheritance, as well as in development, physiology and disease. However, because of the absence of any selective inhibitors, the relevance of the demethylase activity of JMJ enzymes in regulating cellular responses remains poorly understood. Here we present a structure-guided small-molecule and chemoproteomics approach to elucidating the functional role of the H3K27me3-specific demethylase subfamily (KDM6 subfamily members JMJD3 and UTX). The liganded structures of human and mouse JMJD3 provide novel insight into the specificity determinants for cofactor, substrate and inhibitor recognition by the KDM6 subfamily of demethylases. We exploited these structural features to generate the first small-molecule catalytic site inhibitor that is selective for the H3K27me3-specific JMJ subfamily. We demonstrate that this inhibitor binds in a novel manner and reduces lipopolysaccharide-induced proinflammatory cytokine production by human primary macrophages, a process that depends on both JMJD3 and UTX. Our results resolve the ambiguity associated with the catalytic function of H3K27-specific JMJs in regulating disease-relevant inflammatory responses and provide encouragement for designing small-molecule inhibitors to allow selective pharmacological intervention across the JMJ family.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Sequência de Aminoácidos , Animais , Biocatálise/efeitos dos fármacos , Domínio Catalítico , Células Cultivadas , Inibidores Enzimáticos/metabolismo , Evolução Molecular , Histonas/química , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/classificação , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Macrófagos/enzimologia , Macrófagos/metabolismo , Metilação/efeitos dos fármacos , Camundongos , Modelos Moleculares , Especificidade por Substrato , Fator de Necrose Tumoral alfa/biossíntese
10.
Acta Neuropathol ; 133(5): 731-749, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28083634

RESUMO

Dysregulated proteostasis is a key feature of a variety of neurodegenerative disorders. In Alzheimer's disease (AD), progression of symptoms closely correlates with spatiotemporal progression of Tau aggregation, with "early" oligomeric Tau forms rather than mature neurofibrillary tangles (NFTs) considered to be pathogenetic culprits. The ubiquitin-proteasome system (UPS) controls degradation of soluble normal and abnormally folded cytosolic proteins. The UPS is affected in AD and is identified by genomewide association study (GWAS) as a risk pathway for AD. The UPS is determined by balanced regulation of ubiquitination and deubiquitination. In this work, we performed isobaric tags for relative and absolute quantitation (iTRAQ)-based Tau interactome mapping to gain unbiased insight into Tau pathophysiology and to identify novel Tau-directed therapeutic targets. Focusing on Tau deubiquitination, we here identify Otub1 as a Tau-deubiquitinating enzyme. Otub1 directly affected Lys48-linked Tau deubiquitination, impairing Tau degradation, dependent on its catalytically active cysteine, but independent of its noncanonical pathway modulated by its N-terminal domain in primary neurons. Otub1 strongly increased AT8-positive Tau and oligomeric Tau forms and increased Tau-seeded Tau aggregation in primary neurons. Finally, we demonstrated that expression of Otub1 but not its catalytically inactive form induced pathological Tau forms after 2 months in Tau transgenic mice in vivo, including AT8-positive Tau and oligomeric Tau forms. Taken together, we here identified Otub1 as a Tau deubiquitinase in vitro and in vivo, involved in formation of pathological Tau forms, including small soluble oligomeric forms. Otub1 and particularly Otub1 inhibitors, currently under development for cancer therapies, may therefore yield interesting novel therapeutic avenues for Tauopathies and AD.


Assuntos
Cisteína Endopeptidases/genética , Enzimas Desubiquitinantes/metabolismo , Emaranhados Neurofibrilares/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Humanos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Tauopatias/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia
11.
Nat Chem Biol ; 11(11): 878-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26436839

RESUMO

Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are driver mutations in acute myeloid leukemia (AML) and other cancers. We report the development of new allosteric inhibitors of mutant IDH1. Crystallographic and biochemical results demonstrated that compounds of this chemical series bind to an allosteric site and lock the enzyme in a catalytically inactive conformation, thereby enabling inhibition of different clinically relevant IDH1 mutants. Treatment of IDH1 mutant primary AML cells uniformly led to a decrease in intracellular 2-HG, abrogation of the myeloid differentiation block and induction of granulocytic differentiation at the level of leukemic blasts and more immature stem-like cells, in vitro and in vivo. Molecularly, treatment with the inhibitors led to a reversal of the DNA cytosine hypermethylation patterns caused by mutant IDH1 in the cells of individuals with AML. Our study provides proof of concept for the molecular and biological activity of novel allosteric inhibitors for targeting different mutant forms of IDH1 in leukemia.


Assuntos
Di-Hidropiridinas/farmacologia , Inibidores Enzimáticos/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Pirazóis/farmacologia , Regulação Alostérica , Sítio Alostérico , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ilhas de CpG , Cristalografia por Raios X , Citosina/química , Citosina/metabolismo , Metilação de DNA/efeitos dos fármacos , Di-Hidropiridinas/química , Di-Hidropiridinas/farmacocinética , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Granulócitos/efeitos dos fármacos , Granulócitos/enzimologia , Granulócitos/patologia , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Cinética , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Modelos Moleculares , Mutação , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Cultura Primária de Células , Ligação Proteica , Pirazóis/química , Pirazóis/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nat Chem Biol ; 11(3): 189-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25622091

RESUMO

PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored.


Assuntos
Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Hidrolases/antagonistas & inibidores , Neutrófilos/efeitos dos fármacos , Animais , Benzimidazóis/síntese química , Ligação Competitiva , Cálcio/metabolismo , Citrulina/metabolismo , Inibidores Enzimáticos/síntese química , Células HEK293 , Histonas/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Modelos Moleculares , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas , Bibliotecas de Moléculas Pequenas , Especificidade por Substrato
13.
Nature ; 478(7370): 529-33, 2011 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-21964340

RESUMO

Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia, which are often refractory to conventional therapies. Many MLL-fusion partners are members of the super elongation complex (SEC), a critical regulator of transcriptional elongation, suggesting that aberrant control of this process has an important role in leukaemia induction. Here we use a global proteomic strategy to demonstrate that MLL fusions, as part of SEC and the polymerase-associated factor complex (PAFc), are associated with the BET family of acetyl-lysine recognizing, chromatin 'adaptor' proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia, via the displacement of the BET family of proteins from chromatin. We show that a novel small molecule inhibitor of the BET family, GSK1210151A (I-BET151), has profound efficacy against human and murine MLL-fusion leukaemic cell lines, through the induction of early cell cycle arrest and apoptosis. I-BET151 treatment in two human leukaemia cell lines with different MLL fusions alters the expression of a common set of genes whose function may account for these phenotypic changes. The mode of action of I-BET151 is, at least in part, due to the inhibition of transcription at key genes (BCL2, C-MYC and CDK6) through the displacement of BRD3/4, PAFc and SEC components from chromatin. In vivo studies indicate that I-BET151 has significant therapeutic value, providing survival benefit in two distinct mouse models of murine MLL-AF9 and human MLL-AF4 leukaemia. Finally, the efficacy of I-BET151 against human leukaemia stem cells is demonstrated, providing further evidence of its potent therapeutic potential. These findings establish the displacement of BET proteins from chromatin as a promising epigenetic therapy for these aggressive leukaemias.


Assuntos
Cromatina/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/genética , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteômica , Transcrição Gênica/efeitos dos fármacos
15.
Nat Chem Biol ; 8(6): 576-82, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22544264

RESUMO

We devised a high-throughput chemoproteomics method that enabled multiplexed screening of 16,000 compounds against native protein and lipid kinases in cell extracts. Optimization of one chemical series resulted in CZC24832, which is to our knowledge the first selective inhibitor of phosphoinositide 3-kinase γ (PI3Kγ) with efficacy in in vitro and in vivo models of inflammation. Extensive target- and cell-based profiling of CZC24832 revealed regulation of interleukin-17-producing T helper cell (T(H)17) differentiation by PI3Kγ, thus reinforcing selective inhibition of PI3Kγ as a potential treatment for inflammatory and autoimmune diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Interleucina-17/imunologia , Inibidores de Fosfoinositídeo-3 Quinase , Bibliotecas de Moléculas Pequenas/farmacologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Artrite Experimental/patologia , Ligação Competitiva , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Classe Ib de Fosfatidilinositol 3-Quinase , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Estrutura Molecular , Ratos , Ratos Wistar , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/enzimologia , Linfócitos T Auxiliares-Indutores/imunologia
16.
Genome Biol ; 25(1): 42, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308274

RESUMO

BACKGROUND: Drug targets with genetic evidence are expected to increase clinical success by at least twofold. Yet, translating disease-associated genetic variants into functional knowledge remains a fundamental challenge of drug discovery. A key issue is that the vast majority of complex disease associations cannot be cleanly mapped to a gene. Immune disease-associated variants are enriched within regulatory elements found in T-cell-specific open chromatin regions. RESULTS: To identify genes and molecular programs modulated by these regulatory elements, we develop a CRISPRi-based single-cell functional screening approach in primary human T cells. Our pipeline enables the interrogation of transcriptomic changes induced by the perturbation of regulatory elements at scale. We first optimize an efficient CRISPRi protocol in primary CD4+ T cells via CROPseq vectors. Subsequently, we perform a screen targeting 45 non-coding regulatory elements and 35 transcription start sites and profile approximately 250,000 T -cell single-cell transcriptomes. We develop a bespoke analytical pipeline for element-to-gene (E2G) mapping and demonstrate that our method can identify both previously annotated and novel E2G links. Lastly, we integrate genetic association data for immune-related traits and demonstrate how our platform can aid in the identification of effector genes for GWAS loci. CONCLUSIONS: We describe "primary T cell crisprQTL" - a scalable, single-cell functional genomics approach for mapping regulatory elements to genes in primary human T cells. We show how this framework can facilitate the interrogation of immune disease GWAS hits and propose that the combination of experimental and QTL-based techniques is likely to address the variant-to-function problem.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Doenças do Sistema Imunitário , Humanos , Linfócitos T , Sequências Reguladoras de Ácido Nucleico , Cromatina/genética , Doenças do Sistema Imunitário/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
17.
Methods ; 57(4): 430-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22687620

RESUMO

Recent advances in mass spectrometry-based approaches have enabled the investigation of drug-protein interactions in various ways including the direct detection of drug-target complexes, the examination of drug-induced changes in the target protein structure, and the monitoring of enzymatic target activity. Mass spectrometry-based proteomics methods also permit the unbiased analysis of changes in protein abundance and post-translational modifications induced by drug action. Finally, chemoproteomic affinity enrichment studies enable the deconvolution of drug targets under close to physiological conditions. This review provides an overview of current methods for the characterization of drug-target interactions by mass spectrometry and describes a protocol for chemoproteomic target binding studies using immobilized bioactive molecules.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Espectrometria de Massas/métodos , Proteínas/química , Animais , Técnicas de Cultura de Células , Cromatografia de Afinidade , Medição da Troca de Deutério , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios Enzimáticos , Humanos , Terapia de Alvo Molecular , Ligação Proteica , Proteínas/isolamento & purificação , Proteômica
18.
Elife ; 122023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37073955

RESUMO

The trapping of Poly-ADP-ribose polymerase (PARP) on DNA caused by PARP inhibitors (PARPi) triggers acute DNA replication stress and synthetic lethality (SL) in BRCA2-deficient cells. Hence, DNA damage is accepted as a prerequisite for SL in BRCA2-deficient cells. In contrast, here we show that inhibiting ROCK in BRCA2-deficient cells triggers SL independently from acute replication stress. Such SL is preceded by polyploidy and binucleation resulting from cytokinesis failure. Such initial mitosis abnormalities are followed by other M phase defects, including anaphase bridges and abnormal mitotic figures associated with multipolar spindles, supernumerary centrosomes and multinucleation. SL was also triggered by inhibiting Citron Rho-interacting kinase, another enzyme that, similarly to ROCK, regulates cytokinesis. Together, these observations demonstrate that cytokinesis failure triggers mitotic abnormalities and SL in BRCA2-deficient cells. Furthermore, the prevention of mitotic entry by depletion of Early mitotic inhibitor 1 (EMI1) augmented the survival of BRCA2-deficient cells treated with ROCK inhibitors, thus reinforcing the association between M phase and cell death in BRCA2-deficient cells. This novel SL differs from the one triggered by PARPi and uncovers mitosis as an Achilles heel of BRCA2-deficient cells.


Assuntos
Dano ao DNA , Mutações Sintéticas Letais , Anáfase , Mitose , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Proteína BRCA2/genética , Humanos
19.
BMC Cancer ; 12: 38, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22277058

RESUMO

BACKGROUND: The heat shock protein 90 (Hsp90) is required for the stability of many signalling kinases. As a target for cancer therapy it allows the simultaneous inhibition of several signalling pathways. However, its inhibition in healthy cells could also lead to severe side effects. This is the first comprehensive analysis of the response to Hsp90 inhibition at the kinome level. METHODS: We quantitatively profiled the effects of Hsp90 inhibition by geldanamycin on the kinome of one primary (Hs68) and three tumour cell lines (SW480, U2OS, A549) by affinity proteomics based on immobilized broad spectrum kinase inhibitors ("kinobeads"). To identify affected pathways we used the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway classification. We combined Hsp90 and proteasome inhibition to identify Hsp90 substrates in Hs68 and SW480 cells. The mutational status of kinases from the used cell lines was determined using next-generation sequencing. A mutation of Hsp90 candidate client RIPK2 was mapped onto its structure. RESULTS: We measured relative abundances of > 140 protein kinases from the four cell lines in response to geldanamycin treatment and identified many new potential Hsp90 substrates. These kinases represent diverse families and cellular functions, with a strong representation of pathways involved in tumour progression like the BMP, MAPK and TGF-beta signalling cascades. Co-treatment with the proteasome inhibitor MG132 enabled us to classify 64 kinases as true Hsp90 clients. Finally, mutations in 7 kinases correlate with an altered response to Hsp90 inhibition. Structural modelling of the candidate client RIPK2 suggests an impact of the mutation on a proposed Hsp90 binding domain. CONCLUSIONS: We propose a high confidence list of Hsp90 kinase clients, which provides new opportunities for targeted and combinatorial cancer treatment and diagnostic applications.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Fator de Crescimento Transformador beta/metabolismo , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Proteínas de Choque Térmico HSP90/química , Humanos , Lactamas Macrocíclicas/farmacologia , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteômica , Transdução de Sinais/efeitos dos fármacos
20.
Bioorg Med Chem ; 20(6): 1973-8, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22130419

RESUMO

Chemoproteomics represents a new research discipline at the interface of medicinal chemistry, biochemistry, and cell biology focused on studying the molecular mechanisms of action of drugs and other bioactive small molecules. Research strategies frequently combine phenotypic screening with subsequent target identification, and aim at a proteome-wide characterization of drug-induced changes in cellular protein expression and post-translational modifications. In recent years quantitative mass spectrometry has taken center stage in many of these approaches. This review describes experimental strategies in current chemical proteomics research, discusses recent examples of successful applications, and highlights areas in drug discovery where chemical proteomics-based assays using native endogenous proteins are expected to have substantial impact.


Assuntos
Descoberta de Drogas/métodos , Proteoma/metabolismo , Proteômica/métodos , Animais , Cromatografia de Afinidade/métodos , Humanos , Farmacologia , Proteoma/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA