Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36881879

RESUMO

Increasing numbers of horizontal transfer (HT) of genes and transposable elements are reported in insects. Yet the mechanisms underlying these transfers remain unknown. Here we first quantify and characterize the patterns of chromosomal integration of the polydnavirus (PDV) encoded by the Campopleginae Hyposoter didymator parasitoid wasp (HdIV) in somatic cells of parasitized fall armyworm (Spodoptera frugiperda). PDVs are domesticated viruses injected by wasps together with their eggs into their hosts in order to facilitate the development of wasp larvae. We found that six HdIV DNA circles integrate into the genome of host somatic cells. Each host haploid genome suffers between 23 and 40 integration events (IEs) on average 72 h post-parasitism. Almost all IEs are mediated by DNA double-strand breaks occurring in the host integration motif (HIM) of HdIV circles. We show that despite their independent evolutionary origins, PDV from both Campopleginae and Braconidae wasps use remarkably similar mechanisms for chromosomal integration. Next, our similarity search performed on 775 genomes reveals that PDVs of both Campopleginae and Braconidae wasps have recurrently colonized the germline of dozens of lepidopteran species through the same mechanisms they use to integrate into somatic host chromosomes during parasitism. We found evidence of HIM-mediated HT of PDV DNA circles in no less than 124 species belonging to 15 lepidopteran families. Thus, this mechanism underlies a major route of HT of genetic material from wasps to lepidopterans with likely important consequences on lepidopterans.


Assuntos
Polydnaviridae , Vespas , Animais , Polydnaviridae/genética , Vespas/genética , Larva/genética , Cromossomos
2.
PLoS Genet ; 17(9): e1009751, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492000

RESUMO

Some DNA viruses infect host animals usually by integrating their DNAs into the host genome. However, the mechanisms for integration remain largely unknown. Here, we find that Cotesia vestalis bracovirus (CvBV), a polydnavirus of the parasitic wasp C. vestalis (Haliday), integrates its DNA circles into host Plutella xylostella (L.) genome by two distinct strategies, conservatively and randomly, through high-throughput sequencing analysis. We confirmed that the conservatively integrating circles contain an essential "8+5" nucleotides motif which is required for integration. Then we find CvBV circles are integrated into the caterpillar's genome in three temporal patterns, the early, mid and late stage-integration. We further identify that three CvBV-encoded integrases are responsible for some, but not all of the virus circle integrations, indeed they mainly participate in the processes of early stage-integration. Strikingly, we find two P. xylostella retroviral integrases (PxIN1 and PxIN2) are highly induced upon wasp parasitism, and PxIN1 is crucial for integration of some other early-integrated CvBV circles, such as CvBV_04, CvBV_12 and CvBV_24, while PxIN2 is important for integration of a late-integrated CvBV circle, CvBV_21. Our data uncover a novel mechanism in which CvBV integrates into the infected host genome, not only by utilizing its own integrases, but also by recruiting host enzymes. These findings will strongly deepen our understanding of how bracoviruses regulate and integrate into their hosts.


Assuntos
DNA Viral/genética , Integrases/metabolismo , Mariposas/genética , Polydnaviridae/fisiologia , Animais , Interações Hospedeiro-Parasita/genética , Mariposas/enzimologia , Mariposas/parasitologia , Polydnaviridae/genética , Vespas/genética , Vespas/fisiologia
3.
J Virol ; 96(13): e0052422, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35678601

RESUMO

Nudiviruses are large double-stranded DNA viruses related to baculoviruses known to be endogenized in the genomes of certain parasitic wasp species. These wasp-virus associations allow the production of viral particles or virus-like particles that ensure wasp parasitism success within lepidopteran hosts. Venturia canescens is an ichneumonid wasp belonging to the Campopleginae subfamily that has endogenized nudivirus genes belonging to the Alphanudivirus genus to produce "virus-like particles" (Venturia canescens virus-like particles [VcVLPs]), which package proteic virulence factors. The main aim of this study was to determine whether alphanudivirus gene functions have been conserved following endogenization. The expression dynamics of alphanudivirus genes was monitored by a high throughput transcriptional approach, and the functional role of lef-4 and lef-8 genes predicted to encode viral RNA polymerase components was investigated by RNA interference. As described for baculovirus infections and for endogenized nudivirus genes in braconid wasp species producing bracoviruses, a transcriptional cascade involving early and late expressed alphanudivirus genes could be observed. The expression of lef-4 and lef-8 was also shown to be required for the expression of alphanudivirus late genes allowing correct particle formation. Together with previous literature, the results show that endogenization of nudiviruses in parasitoid wasps has repeatedly led to the conservation of the viral RNA polymerase function, allowing the production of viruses or viral-like particles that differ in composition but enable wasp parasitic success. IMPORTANCE This study shows that endogenization of a nudivirus genome in a Campopleginae parasitoid wasp has led to the conservation, as for endogenized nudiviruses in braconid parasitoid wasps, of the viral RNA polymerase function, required for the transcription of genes encoding viral particles involved in wasp parasitism success. We also showed for the first time that RNA interference (RNAi) can be successfully used to downregulate gene expression in this species, a model in behavioral ecology. This opens the opportunity to investigate the function of genes involved in other traits important for parasitism success, such as reproductive strategies and host choice. Fundamental data acquired on gene function in Venturia canescens are likely to be transferable to other parasitoid wasp species used in biological control programs. This study also renders possible the investigation of other nudivirus gene functions, for which little data are available.


Assuntos
Nudiviridae , Transcrição Viral , Vespas , Animais , DNA Viral/genética , Nudiviridae/genética , Proteínas do Complexo da Replicase Viral , Vespas/virologia
4.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36282569

RESUMO

Bracoviruses and ichnoviruses are endogenous viruses of parasitic wasps that produce particles containing virulence genes expressed in host tissues and necessary for parasitism success. In the case of bracoviruses the particles are produced by conserved genes of nudiviral origin integrated permanently in the wasp genome, whereas the virulence genes can strikingly differ depending on the wasp lineage. To date most data obtained on bracoviruses concerned species from the braconid subfamily of Microgastrinae. To gain a broader view on the diversity of virulence genes we sequenced the genome packaged in the particles of Chelonus inanitus bracovirus (CiBV) produced by a wasp belonging to a different subfamily: the Cheloninae. These are egg-larval parasitoids, which means that they oviposit into the host egg and the wasp larvae then develop within the larval stages of the host. We found that most of CiBV virulence genes belong to families that are specific to Cheloninae. As other bracoviruses and ichnoviruses however, CiBV encode v-ank genes encoding truncated versions of the immune cactus/IκB factor, which suggests these proteins might play a key role in host-parasite interactions involving domesticated endogenous viruses. We found that the structures of CiBV V-ANKs are different from those previously reported. Phylogenetic analysis supports the hypothesis that they may originate from a cactus/IκB immune gene from the wasp genome acquired by the bracovirus. However, their evolutionary history is different from that shared by other V-ANKs, whose common origin probably reflects horizontal gene transfer events of virus sequences between braconid and ichneumonid wasps.


Assuntos
Polydnaviridae , Vespas , Humanos , Animais , Polydnaviridae/genética , Filogenia , Vespas/genética , Proteínas Virais/genética , Evolução Biológica
5.
J Virol ; 95(22): e0068421, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319152

RESUMO

Bracoviruses are domesticated viruses found in parasitic wasp genomes. They are composed of genes of nudiviral origin that are involved in particle production and proviral segments containing virulence genes that are necessary for parasitism success. During particle production, proviral segments are amplified and individually packaged as DNA circles in nucleocapsids. These particles are injected by parasitic wasps into host larvae together with their eggs. Bracovirus circles of two wasp species were reported to undergo chromosomal integration in parasitized host hemocytes, through a conserved sequence named the host integration motif (HIM). Here, we used bulk Illumina sequencing to survey integrations of Cotesia typhae bracovirus circles in the DNA of its host, the maize corn borer (Sesamia nonagrioides), 7 days after parasitism. First, assembly and annotation of a high-quality genome for C. typhae enabled us to characterize 27 proviral segments clustered in proviral loci. Using these data, we characterized large numbers of chromosomal integrations (from 12 to 85 events per host haploid genome) for all 16 bracovirus circles containing a HIM. Integrations were found in four S. nonagrioides tissues and in the body of a caterpillar in which parasitism had failed. The 12 remaining circles do not integrate but are maintained at high levels in host tissues. Surprisingly, we found that HIM-mediated chromosomal integration in the wasp germ line has occurred accidentally at least six times during evolution. Overall, our study furthers our understanding of wasp-host genome interactions and supports HIM-mediated chromosomal integration as a possible mechanism of horizontal transfer from wasps to their hosts. IMPORTANCE Bracoviruses are endogenous domesticated viruses of parasitoid wasps that are injected together with wasp eggs into wasp host larvae during parasitism. Several studies have shown that some DNA circles packaged into bracovirus particles become integrated into host somatic genomes during parasitism, but the phenomenon has never been studied using nontargeted approaches. Here, we use bulk Illumina sequencing to systematically characterize and quantify bracovirus circle integrations that occur in four tissues of the Mediterranean corn borer (Sesamia nonagrioides) during parasitism by the Cotesia typhae wasp. Our analysis reveals that all circles containing a HIM integrate at substantial levels (from 12 to 85 integrations per host cell, in total) in all tissues, while other circles do not integrate. In addition to shedding new light on wasp-bracovirus-host interactions, our study supports HIM-mediated chromosomal integration of bracovirus as a possible source of wasp-to-host horizontal transfer, with long-term evolutionary consequences.


Assuntos
DNA Viral , Genoma Viral , Interações Hospedeiro-Parasita/genética , Polydnaviridae/genética , Vespas/virologia , Animais , Transferência Genética Horizontal
6.
J Invertebr Pathol ; 189: 107718, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077776

RESUMO

Nudiviruses (Nudiviridae) are double-stranded DNA viruses with enveloped and rod-shaped virions. Several insect orders (e.g., Diptera, Lepidoptera, Coleoptera, Orthoptera) and aquatic crustaceans are susceptible to nudivirus infections, which can result in varied degrees of disease in all developmental host stages. Their pathogenicity endangers insect rearing and crustacean aquacultures, but has also proven effective in biocontrol against Oryctes rhinoceros infestations. This literature review aims to present all known nudivirus species and provide a comprehensive Nudiviridae phylogeny by including recently described nudiviral isolates, and discuss this phylogeny in comparison to current opinions and taxonomical propositions. Moreover, we aim to clarify biological, pathological and genomic differences or similarities between nudiviruses and related entomopathogenic viruses, including baculoviruses (Baculoviridae) and bracoviruses (Polydnaviridae). A phylogenetic analysis using 17 concatenated nudivirus core genes resulted in the expected structure with the genera Alphanudivirus and Betanudivirus, as well as the most recently recognized genera Gammanudivirus and Deltanudivirus. The hymenopteran Osmia cornuta nudivirus (OcNV) groups closest with the hymenopteran Fopius arisanus endogenous nudivirus (FaENV) and does not share a most common ancestor with the hymenopteran bracoviruses. Except for one node, all clades are highly supported. The proposition of a recent study to assign subgroups to the alphanudiviruses might be legitimate, but more hymenopteran and orthopteran nudiviruses, especially in bees and cricket, need to be identified to resolve this proposal. In addition, freshwater and marine nudiviruses might form taxonomic subgroups among gammanudiviruses as well, but more aquatic nudiviruses need to be identified and sequenced for better resolution. Furthermore, the search for nudiviruses in insects with (semi)aquatic life stages may aid in finding the missing link that led to the manifestation of aquatic nudiviruses.


Assuntos
Besouros , Nudiviridae , Polydnaviridae , Animais , Baculoviridae/genética , Besouros/genética , Genoma Viral , Insetos , Filogenia , Polydnaviridae/genética
7.
PLoS Genet ; 15(11): e1008398, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682601

RESUMO

Galls are plant tissues whose development is induced by another organism for the inducer's benefit. 30,000 arthropod species induce galls, and in most cases the inducing effectors and target plant systems are unknown. Cynipid gall wasps are a speciose monophyletic radiation that induce structurally complex galls on oaks and other plants. We used a model system comprising the gall wasp Biorhiza pallida and the oak Quercus robur to characterise inducer and host plant gene expression at defined stages through the development of galled and ungalled plant tissues, and tested alternative hypotheses for the origin and type of galling effectors and plant metabolic pathways involved. Oak gene expression patterns diverged markedly during development of galled and normal buds. Young galls showed elevated expression of oak genes similar to legume root nodule Nod factor-induced early nodulin (ENOD) genes and developmental parallels with oak buds. In contrast, mature galls showed substantially different patterns of gene expression to mature leaves. While most oak transcripts could be functionally annotated, many gall wasp transcripts of interest were novel. We found no evidence in the gall wasp for involvement of third-party symbionts in gall induction, for effector delivery using virus-like-particles, or for gallwasp expression of genes coding for plant hormones. Many differentially and highly expressed genes in young larvae encoded secretory peptides, which we hypothesise are effector proteins exported to plant tissues. Specifically, we propose that host arabinogalactan proteins and gall wasp chitinases interact in young galls to generate a somatic embryogenesis-like process in oak tissues surrounding the gall wasp larvae. Gall wasp larvae also expressed genes encoding multiple plant cell wall degrading enzymes (PCWDEs). These have functional orthologues in other gall inducing cynipids but not in figitid parasitoid sister groups, suggesting that they may be evolutionary innovations associated with cynipid gall induction.


Assuntos
Interações Hospedeiro-Parasita/genética , Tumores de Planta/genética , Quercus/genética , Vespas/genética , Animais , Regulação da Expressão Gênica de Plantas/genética , Genômica , Larva/genética , Redes e Vias Metabólicas/genética , Fenótipo , Reguladores de Crescimento de Plantas/genética , Folhas de Planta , Tumores de Planta/parasitologia , Quercus/parasitologia , Vespas/patogenicidade
8.
BMC Biol ; 18(1): 89, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32703219

RESUMO

BACKGROUND: Polydnaviruses (PDVs) are mutualistic endogenous viruses inoculated by some lineages of parasitoid wasps into their hosts, where they facilitate successful wasp development. PDVs include the ichnoviruses and bracoviruses that originate from independent viral acquisitions in ichneumonid and braconid wasps respectively. PDV genomes are fully incorporated into the wasp genomes and consist of (1) genes involved in viral particle production, which derive from the viral ancestor and are not encapsidated, and (2) proviral segments harboring virulence genes, which are packaged into the viral particle. To help elucidating the mechanisms that have facilitated viral domestication in ichneumonid wasps, we analyzed the structure of the viral insertions by sequencing the whole genome of two ichnovirus-carrying wasp species, Hyposoter didymator and Campoletis sonorensis. RESULTS: Assemblies with long scaffold sizes allowed us to unravel the organization of the endogenous ichnovirus and revealed considerable dispersion of the viral loci within the wasp genomes. Proviral segments contained species-specific sets of genes and occupied distinct genomic locations in the two ichneumonid wasps. In contrast, viral machinery genes were organized in clusters showing highly conserved gene content and order, with some loci located in collinear wasp genomic regions. This genomic architecture clearly differs from the organization of PDVs in braconid wasps, in which proviral segments are clustered and viral machinery elements are more dispersed. CONCLUSIONS: The contrasting structures of the two types of ichnovirus genomic elements are consistent with their different functions: proviral segments are vehicles for virulence proteins expected to adapt according to different host defense systems, whereas the genes involved in virus particle production in the wasp are likely more stable and may reflect ancestral viral architecture. The distinct genomic architectures seen in ichnoviruses versus bracoviruses reveal different evolutionary trajectories that have led to virus domestication in the two wasp lineages.


Assuntos
Evolução Molecular , Genoma Viral , Interações entre Hospedeiro e Microrganismos , Polydnaviridae/genética , Vespas/virologia , Animais , Especificidade da Espécie , Sequenciamento Completo do Genoma
9.
Mol Ecol ; 29(18): 3476-3493, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32731311

RESUMO

Dissecting the genetic basis of intraspecific variations in life history traits is essential to understand their evolution, notably for potential biocontrol agents. Such variations are observed in the endoparasitoid Cotesia typhae (Hymenoptera: Braconidae), specialized on the pest Sesamia nonagrioides (Lepidoptera: Noctuidae). Previously, we identified two strains of C. typhae that differed significantly for life history traits on an allopatric host population. To investigate the genetic basis underlying these phenotypic differences, we used a quantitative trait locus (QTL) approach based on restriction site-associated DNA markers. The characteristic of C. typhae reproduction allowed us generating sisters sharing almost the same genetic content, named clonal sibship. Crosses between individuals from the two strains were performed to generate F2 and F8 recombinant CSS. The genotypes of 181 clonal sibships were determined as well as the phenotypes of the corresponding 4,000 females. Informative markers were then used to build a high-quality genetic map. These 465 markers spanned a total length of 1,300 cM and were organized in 10 linkage groups which corresponded to the number of C. typhae chromosomes. Three QTLs were detected for parasitism success and two for offspring number, while none were identified for sex ratio. The QTLs explained, respectively, 27.7% and 24.5% of the phenotypic variation observed. The gene content of the genomic intervals was investigated based on the genome of C. congregata and revealed 67 interesting candidates, as potentially involved in the studied traits, including components of the venom and of the symbiotic virus (bracovirus) shown to be necessary for parasitism success in related wasps.


Assuntos
Polydnaviridae , Vespas , Animais , Feminino , Ligação Genética , Fenótipo , Polydnaviridae/genética , Locos de Características Quantitativas/genética , Reprodução/genética , Vespas/genética
10.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769342

RESUMO

Polydnaviruses (PDVs) are essential for the parasitism success of tens of thousands of species of parasitoid wasps. PDVs are present in wasp genomes as proviruses, which serve as the template for the production of double-stranded circular viral DNA carrying virulence genes that are injected into lepidopteran hosts. PDV circles do not contain genes coding for particle production, thereby impeding viral replication in caterpillar hosts during parasitism. Here, we investigated the fate of PDV circles of Cotesia congregata bracovirus during parasitism of the tobacco hornworm, Manduca sexta, by the wasp Cotesia congregata Sequences sharing similarities with host integration motifs (HIMs) of Microplitis demolitor bracovirus (MdBV) circles involved in integration into DNA could be identified in 12 CcBV circles, which encode PTP and VANK gene families involved in host immune disruption. A PCR approach performed on a subset of these circles indicated that they persisted in parasitized M. sexta hemocytes as linear forms, possibly integrated in host DNA. Furthermore, by using a primer extension capture method based on these HIMs and high-throughput sequencing, we could show that 8 out of 9 circles tested were integrated in M. sexta hemocyte genomic DNA and that integration had occurred specifically using the HIM, indicating that an HIM-mediated specific mechanism was involved in their integration. Investigation of BV circle insertion sites at the genome scale revealed that certain genomic regions appeared to be enriched in BV insertions, but no specific M. sexta target site could be identified.IMPORTANCE The identification of a specific and efficient integration mechanism shared by several bracovirus species opens the question of its role in braconid parasitoid wasp parasitism success. Indeed, results obtained here show massive integration of bracovirus DNA in somatic immune cells at each parasitism event of a caterpillar host. Given that bracoviruses do not replicate in infected cells, integration of viral sequences in host DNA might allow the production of PTP and VANK virulence proteins within newly dividing cells of caterpillar hosts that continue to develop during parasitism. Furthermore, this integration process could serve as a basis to understand how PDVs mediate the recently identified gene flux between parasitoid wasps and Lepidoptera and the frequency of these horizontal transfer events in nature.


Assuntos
DNA Viral/metabolismo , Hemócitos/virologia , Manduca/virologia , Polydnaviridae/fisiologia , Proteínas Virais/metabolismo , Integração Viral/fisiologia , Animais , DNA Viral/genética , Hemócitos/metabolismo , Manduca/genética , Proteínas Virais/genética
11.
Parasitology ; 145(6): 713-723, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28534452

RESUMO

Several lineages of endoparasitoid wasps, which develop inside the body of other insects, have domesticated viruses, used as delivery tools of essential virulence factors for the successful development of their progeny. Virus domestications are major evolutionary transitions in highly diverse parasitoid wasps. Much progress has recently been made to characterize the nature of these ancestrally captured endogenous viruses that have evolved within the wasp genomes. Virus domestication from different viral families occurred at least three times in parasitoid wasps. This evolutionary convergence led to different strategies. Polydnaviruses (PDVs) are viral gene transfer agents and virus-like particles of the wasp Venturia canescens deliver proteins. Here, we take the standpoint of parasitoid wasps to review current knowledge on virus domestications by different parasitoid lineages. Then, based on genomic data from parasitoid wasps, PDVs and exogenous viruses, we discuss the different evolutionary steps required to transform viruses into vehicles for the delivery of the virulence molecules that we observe today. Finally, we discuss how endoparasitoid wasps manipulate host physiology and ensure parasitism success, to highlight the possible advantages of viral domestication as compared with other virulence strategies.


Assuntos
Domesticação , Evolução Molecular , Interações Hospedeiro-Parasita , Vírus/genética , Vespas/virologia , Animais , DNA Viral/genética , Genoma de Inseto , Genômica , Polydnaviridae/genética , Simbiose , Virulência , Vespas/genética
12.
PLoS Genet ; 11(9): e1005470, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26379286

RESUMO

Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens.


Assuntos
Genes de Insetos , Lepidópteros/parasitologia , Polydnaviridae/fisiologia , Vespas/genética , Animais , Sequência de Bases , DNA Viral , Dados de Sequência Molecular , Polydnaviridae/genética , Spodoptera/genética
13.
J Virol ; 89(6): 3008-25, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540386

RESUMO

UNLABELLED: A large double-stranded DNA (dsDNA) virus that produces occlusion bodies, typical of baculoviruses, has been described to infect crane fly larvae of the genus Tipula (Diptera, Tipulidae). Because of a lack of genomic data, this virus has remained unclassified. Electron microscopy of an archival virus isolated from Tipula oleracea, T. oleracea nudivirus (ToNV), showed irregularly shaped occlusion bodies measuring from 2 to 5 µm in length and 2 µm in middiameter, filled with rod-shape virions containing single nucleocapsids within a bilayer envelope. Whole-genome amplification and Roche 454 sequencing revealed a complete circular genome sequence of 145.7 kb, containing five direct repeat regions. We predicted 131 open reading frames, including a homolog of the polyhedrin gene encoding the major occlusion body protein of T. paludosa nucleopolyhedrovirus (NPV). BLAST searches demonstrated that ToNV had 21 of the 37 baculovirus core genes but shared 52 genes with nudiviruses (NVs). Phylogenomic analyses indicated that ToNV clearly belongs to the Nudiviridae family but should probably be assigned to a new genus. Among nudiviruses, ToNV was most closely related to the Penaeus monodon NV and Heliothis zea NV clade but distantly related to Drosophila innubia NV, the other nudivirus infecting a Diptera. Lastly, ToNV was found to be most closely related to the nuvidirus ancestor of bracoviruses. This was also reflected in terms of gene content, as ToNV was the only known exogenous virus harboring homologs of the Cc50C22.6 and 27b (Cc50C22.7) genes found in the nudiviral genomic cluster involved in bracovirus particle production. IMPORTANCE: The Nudiviridae is a family of arthropod dsDNA viruses from which striking cases of endogenization have been reported (i.e., symbiotic bracoviruses deriving from a nudivirus and the endogenous nudivirus of the brown planthopper). Although related to baculoviruses, relatively little is known about the genomic diversity of exogenous nudiviruses. Here, we characterized, morphologically and genetically, an archival sample of the Tipula oleracea nudivirus (ToNV), which has the particularity of forming occlusion bodies. Comparative genomic and phylogenomic analyses showed ToNV to be to date the closest known relative of the exogenous ancestor of bracoviruses and that ToNV should be assigned to a new genus. Moreover, we revised the homology relationships of nudiviral genes and identified a new set of 32 core genes for the Nudiviridae, of which 21 were also baculovirus core genes. These findings provide important insights into the evolutionary history of large arthropod dsDNA viruses.


Assuntos
Vírus de DNA/genética , Dípteros/virologia , Genoma Viral , Nucleopoliedrovírus/genética , Sequência de Aminoácidos , Animais , Vírus de DNA/química , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Dados de Sequência Molecular , Nucleopoliedrovírus/química , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética
14.
J Virol ; 89(17): 8909-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26085165

RESUMO

UNLABELLED: Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were "captured" by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. IMPORTANCE: Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes of ancestral wasps. However, the identity of the ichnovirus ancestor is unknown, and questions remain regarding the possibility that the two described ichnovirus subgroups, banchine and campoplegine ichnoviruses, have distinct origins. Our study provides unequivocal evidence that these two ichnovirus types are derived from related viral progenitors. This suggests that morphological and genomic differences observed between the ichnovirus lineages, including features unique to banchine ichnovirus genome segments, result from evolutionary divergence either before or after their endogenization. Strikingly, analysis of selected wasp genomic regions revealed genes presumed to be part of the replicative machinery of the progenitor virus, shedding new light on the likely identity of this virus. Finally, these genes could well play a role in ichnovirus replication as they were overexpressed in the virogenic tissue.


Assuntos
DNA Viral/genética , Evolução Molecular , Polydnaviridae/classificação , Polydnaviridae/genética , Animais , Sequência de Bases , Evolução Biológica , Perfilação da Expressão Gênica , Genoma Viral , Genômica , Dados de Sequência Molecular , Polydnaviridae/enzimologia , Análise de Sequência de DNA , Proteínas Virais/genética , Vespas/virologia
15.
J Virol ; 88(16): 8795-812, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872581

RESUMO

UNLABELLED: Bracoviruses (BVs) from the Polydnaviridae family are symbiotic viruses used as biological weapons by parasitoid wasps to manipulate lepidopteran host physiology and induce parasitism success. BV particles are produced by wasp ovaries and injected along with the eggs into the caterpillar host body, where viral gene expression is necessary for wasp development. Recent sequencing of the proviral genome of Cotesia congregata BV (CcBV) identified 222 predicted virulence genes present on 35 proviral segments integrated into the wasp genome. To date, the expressions of only a few selected candidate virulence genes have been studied in the caterpillar host, and we lacked a global vision of viral gene expression. In this study, a large-scale transcriptomic analysis by 454 sequencing of two immune tissues (fat body and hemocytes) of parasitized Manduca sexta caterpillar hosts allowed the detection of expression of 88 CcBV genes expressed 24 h after the onset of parasitism. We linked the expression profiles of these genes to several factors, showing that different regulatory mechanisms control viral gene expression in the host. These factors include the presence of signal peptides in encoded proteins, diversification of promoter regions, and, more surprisingly, gene position on the proviral genome. Indeed, most genes for which expression could be detected are localized in particular proviral regions globally producing higher numbers of circles. Moreover, this polydnavirus (PDV) transcriptomic analysis also reveals that a majority of CcBV genes possess at least one intron and an arthropod transcription start site, consistent with an insect origin of these virulence genes. IMPORTANCE: Bracoviruses (BVs) are symbiotic polydnaviruses used by parasitoid wasps to manipulate lepidopteran host physiology, ensuring wasp offspring survival. To date, the expressions of only a few selected candidate BV virulence genes have been studied in caterpillar hosts. We performed a large-scale analysis of BV gene expression in two immune tissues of Manduca sexta caterpillars parasitized by Cotesia congregata wasps. Genes for which expression could be detected corresponded to genes localized in particular regions of the viral genome globally producing higher numbers of circles. Our study thus brings an original global vision of viral gene expression and paves the way to the determination of the regulatory mechanisms enabling the expression of BV genes in targeted organisms, such as major insect pests. In addition, we identify sequence features suggesting that most BV virulence genes were acquired from insect genomes.


Assuntos
Expressão Gênica/genética , Genes Virais/genética , Genoma Viral/genética , Polydnaviridae/genética , Vespas/genética , Vespas/virologia , Animais , Perfilação da Expressão Gênica/métodos , Manduca/genética , Manduca/virologia , Regiões Promotoras Genéticas/genética
16.
J Virol ; 87(17): 9649-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804644

RESUMO

The relationship between parasitoid wasps and polydnaviruses constitutes one of the few known mutualisms between viruses and eukaryotes. Viral particles are injected with the wasp eggs into parasitized larvae, and the viral genes thus introduced are used to manipulate lepidopteran host physiology. The genome packaged in the particles is composed of 35 double-stranded DNA (dsDNA) circles produced in wasp ovaries by amplification of viral sequences from proviral segments integrated in tandem arrays in the wasp genome. These segments and their flanking regions within the genome of the wasp Cotesia congregata were recently isolated, allowing extensive mapping of amplified sequences. The bracovirus DNAs packaged in the particles were found to be amplified within more than 12 replication units. Strikingly, the nudiviral cluster, the genes of which encode particle structural components, was also amplified, although not encapsidated. Amplification of bracoviral sequences was shown to involve successive head-to-head and tail-to-tail concatemers, which was not expected given the nudiviral origin of bracoviruses.


Assuntos
Genoma Viral , Polydnaviridae/genética , Vespas/patogenicidade , Vespas/virologia , Animais , Sequência de Bases , DNA Viral/química , DNA Viral/genética , Feminino , Amplificação de Genes , Manduca/parasitologia , Manduca/virologia , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Provírus/genética , Replicon , Simbiose , Vírion/genética
17.
Proc Natl Acad Sci U S A ; 108(38): 15931-5, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21911395

RESUMO

To understand how extant viruses interact with their hosts, we need a historical framework of their evolutionary association. Akin to retrovirus or hepadnavirus viral fossils present in eukaryotic genomes, bracoviruses are integrated in braconid wasp genomes and are transmitted by Mendelian inheritance. However, unlike viral genomic fossils, they have retained functional machineries homologous to those of large dsDNA viruses pathogenic to arthropods. Using a phylogenomic approach, we resolved the relationships between bracoviruses and their closest free relatives: baculoviruses and nudiviruses. The phylogeny showed that bracoviruses are nested within the nudivirus clade. Bracoviruses establish a bridge between the virus and animal worlds. Their inclusion in a virus phylogeny allowed us to relate free viruses to fossils. The ages of the wasps were used to calibrate the virus phylogeny. Bayesian analyses revealed that insect dsDNA viruses first evolved at ∼310 Mya in the Paleozoic Era during the Carboniferous Period with the first insects. Furthermore the virus diversification time frame during the Mesozoic Era appears linked to the diversification of insect orders; baculoviruses that infect larvae evolved at the same period as holometabolous insects. These results imply ancient coevolution by resource tracking between several insect dsDNA virus families and their hosts, dating back to 310 Mya.


Assuntos
Vírus de DNA/genética , Vírus de Insetos/genética , Filogenia , Polydnaviridae/genética , Animais , Teorema de Bayes , Vírus de DNA/classificação , DNA Viral/genética , Evolução Molecular , Genoma Viral/genética , Genômica , Vírus de Insetos/classificação , Insetos/classificação , Insetos/genética , Insetos/virologia , Dados de Sequência Molecular , Polydnaviridae/classificação , Fatores de Tempo
18.
Virus Evol ; 10(1): veae022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617843

RESUMO

Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.

19.
BMC Evol Biol ; 12: 253, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23270369

RESUMO

BACKGROUND: Gene duplications have been proposed to be the main mechanism involved in genome evolution and in acquisition of new functions. Polydnaviruses (PDVs), symbiotic viruses associated with parasitoid wasps, are ideal model systems to study mechanisms of gene duplications given that PDV genomes consist of virulence genes organized into multigene families. In these systems the viral genome is integrated in a wasp chromosome as a provirus and virus particles containing circular double-stranded DNA are injected into the parasitoids' hosts and are essential for parasitism success. The viral virulence factors, organized in gene families, are required collectively to induce host immune suppression and developmental arrest. The gene family which encodes protein tyrosine phosphatases (PTPs) has undergone spectacular expansion in several PDV genomes with up to 42 genes. RESULTS: Here, we present strong indications that PTP gene family expansion occurred via classical mechanisms: by duplication of large segments of the chromosomally integrated form of the virus sequences (segmental duplication), by tandem duplications within this form and by dispersed duplications. We also propose a novel duplication mechanism specific to PDVs that involves viral circle reintegration into the wasp genome. The PTP copies produced were shown to undergo conservative evolution along with episodes of adaptive evolution. In particular recently produced copies have undergone positive selection in sites most likely involved in defining substrate selectivity. CONCLUSION: The results provide evidence about the dynamic nature of polydnavirus proviral genomes. Classical and PDV-specific duplication mechanisms have been involved in the production of new gene copies. Selection pressures associated with antagonistic interactions with parasitized hosts have shaped these genes used to manipulate lepidopteran physiology with evidence for positive selection involved in adaptation to host targets.


Assuntos
Evolução Molecular , Duplicação Gênica , Polydnaviridae/enzimologia , Polydnaviridae/genética , Proteínas Tirosina Fosfatases/genética , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Filogenia , Polydnaviridae/metabolismo , Proteínas Tirosina Fosfatases/química , Alinhamento de Sequência , Vespas/virologia
20.
PLoS Pathog ; 6(5): e1000923, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20523890

RESUMO

Many thousands of endoparasitic wasp species are known to inject polydnavirus (PDV) particles into their caterpillar host during oviposition, causing immune and developmental dysfunctions that benefit the wasp larva. PDVs associated with braconid and ichneumonid wasps, bracoviruses and ichnoviruses respectively, both deliver multiple circular dsDNA molecules to the caterpillar. These molecules contain virulence genes but lack core genes typically involved in particle production. This is not completely unexpected given that no PDV replication takes place in the caterpillar. Particle production is confined to the wasp ovary where viral DNAs are generated from proviral copies maintained within the wasp genome. We recently showed that the genes involved in bracovirus particle production reside within the wasp genome and are related to nudiviruses. In the present work we characterized genes involved in ichnovirus particle production by analyzing the components of purified Hyposoter didymator Ichnovirus particles by LC-MS/MS and studying their organization in the wasp genome. Their products are conserved among ichnovirus-associated wasps and constitute a specific set of proteins in the virosphere. Strikingly, these genes are clustered in specialized regions of the wasp genome which are amplified along with proviral DNA during virus particle replication, but are not packaged in the particles. Clearly our results show that ichnoviruses and bracoviruses particles originated from different viral entities, thus providing an example of convergent evolution where two groups of wasps have independently domesticated viruses to deliver genes into their hosts.


Assuntos
Genoma de Inseto/genética , Genoma Viral/genética , Polydnaviridae/genética , Vespas/genética , Vespas/virologia , Animais , Evolução Molecular , Feminino , Família Multigênica/genética , Ovário/fisiologia , Polydnaviridae/patogenicidade , Provírus/genética , Proteínas Virais/genética , Vírion/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA