Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurosci ; 56(9): 5397-5412, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34184343

RESUMO

It is estimated that 40% of dementia cases could be prevented by modification of lifestyle factors that associate with disease risk. One of these potentially modifiable lifestyle factors is social isolation. In this review, we discuss what is known about associations between social isolation and Alzheimer's disease, the most common cause of dementia. This is particularly relevant in the time of the COVID-19 pandemic when social isolation has been enforced with potential emerging negative impacts on cognition. While there are neurobiological mechanisms emerging that may account for the observed epidemiological associations between social isolation and Alzheimer's disease, more fundamental research is needed to fully understand the brain changes induced by isolation that may make people vulnerable to disease.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/etiologia , Pandemias , Cognição , Isolamento Social
2.
Cell Rep Med ; 4(9): 101175, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37652017

RESUMO

Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-ß plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.


Assuntos
Doença de Alzheimer , Microglia , Animais , Humanos , Camundongos , Astrócitos , Ingestão de Alimentos , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA