Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Struct Biol ; 215(1): 107941, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773734

RESUMO

As structural determination of protein complexes approaches atomic resolution, there is an increasing focus on conformational dynamics. Here we conceptualize the combination of two techniques which have become established in recent years: microcrystal electron diffraction and ultrafast electron microscopy. We show that the extremely low dose of pulsed photoemission still enables microED due to the strength of the electron bunching from diffraction of the protein crystals. Indeed, ultrafast electron diffraction experiments on protein crystals have already been demonstrated to be effective in measuring intermolecular forces in protein microcrystals. We discuss difficulties that may arise in the acquisition and processing of data and the overall feasibility of the experiment, paying specific attention to dose and signal-to-noise ratio. In doing so, we outline a detailed workflow that may be effective in minimizing the dose on the specimen. A series of model systems that would be good candidates for initial experiments is provided.


Assuntos
Elétrons , Proteínas , Microscopia Crioeletrônica/métodos , Proteínas/química , Conformação Molecular
2.
Nano Lett ; 16(8): 5060-7, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27411026

RESUMO

Nanoscale stress-sensing can be used across fields ranging from detection of incipient cracks in structural mechanics to monitoring forces in biological tissues. We demonstrate how tetrapod quantum dots (tQDs) embedded in block copolymers act as sensors of tensile/compressive stress. Remarkably, tQDs can detect their own composite dispersion and mechanical properties with a switch in optomechanical response when tQDs are in direct contact. Using experimental characterizations, atomistic simulations and finite-element analyses, we show that under tensile stress, densely packed tQDs exhibit a photoluminescence peak shifted to higher energies ("blue-shift") due to volumetric compressive stress in their core; loosely packed tQDs exhibit a peak shifted to lower energies ("red-shift") from tensile stress in the core. The stress shifts result from the tQD's unique branched morphology in which the CdS arms act as antennas that amplify the stress in the CdSe core. Our nanocomposites exhibit excellent cyclability and scalability with no degraded properties of the host polymer. Colloidal tQDs allow sensing in many materials to potentially enable autoresponsive, smart structural nanocomposites that self-predict impending fracture.

3.
Cell Rep Methods ; 3(1): 100387, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814846

RESUMO

Ponderomotive phase plates have shown that temporally consistent phase contrast is possible within electron microscopes via high-fluence static laser modes resonating in Fabry-Perot cavities. Here, we explore using pulsed laser beams as an alternative method of generating high fluences. We find through forward-stepping finite element models that picosecond or shorter interactions are required for meaningful fluences and phase shifts, with higher pulse energies and smaller beam waists leading to predicted higher fluences. An additional model based on quasi-classical assumptions is used to discover the shape of the phase plate by incorporating the oscillatory nature of the electric field. From these results, we find the transient nature of the laser pulses removes the influence of Kapitza-Dirac diffraction patterns that appear in the static resonator cases. We conclude by predicting that a total laser pulse energy of 8.7 µJ is enough to induce the required π/2 phase shift for Zernike-like phase microscopy.


Assuntos
Tomografia com Microscopia Eletrônica , Luz , Microscopia de Contraste de Fase/métodos , Lasers , Eletricidade
4.
Ultramicroscopy ; 223: 113235, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33647871

RESUMO

The steady rise in the number of ultrafast electron microscopy (UEM) labs, in addition to the opacity and lack of detailed descriptions of current approaches that would enable point-by-point construction, has created an opportunity for sharing common methods and instrumentation for (for example) automating data acquisition to assist in efficient lab start-up and to learn about common and robust protocols. In the spirit of open sharing of methods, we provide here a description of an entry-level method and user interface (UI) for automating UEM experiments, and we provide access to the source code and scripts (source-available) for ease of implementation or as a starting reference point for those entering or seeking to enter the field (https://github.com/CEMSFlannigan/UEMtomaton/releases/tag/v1.0). Core instrumentation and physical connections in the UEM lab at Minnesota are described. Interface communication schemes consisting of duo server-client pairs between critical components - the optical delay stage and the UEM digital camera - are presented, with emphasis placed on describing the logic and communications sequence designed to conduct automated series acquisitions. An application designed and programmed with C++/CLI as Windows Forms in Microsoft Visual Studio - dubbed UEMtomaton - is also presented. Key to the UI layout is centralization of the automation tasks and establishment of communication within the software rather than by interfacing with each individual workstation. It is our hope that this note provides useful insight for current and future UEM researchers, particularly with respect to generalizability and portability of the approach to emerging labs. We note that while this basic, entry-level approach is certainly not the most sophisticated or comprehensive of those currently in use, we feel there is nevertheless value in clearly communicating a proven straightforward method to hopefully lower the barrier to entry into the field.

5.
Struct Dyn ; 7(2): 024103, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32341940

RESUMO

Ultrafast x-ray and electron scattering techniques have proven to be useful for probing the transient elastic lattice deformations associated with photoexcited coherent acoustic phonons. Indeed, femtosecond electron imaging using an ultrafast electron microscope (UEM) has been used to directly image the influence of nanoscale structural and morphological discontinuities on the emergence, propagation, dispersion, and decay behaviors in a variety of materials. Here, we describe our progress toward the development of methods ultimately aimed at quantifying acoustic-phonon properties from real-space UEM images via conventional image simulation methods extended to the associated strain-wave lattice deformation symmetries and extents. Using a model system consisting of pristine single-crystal Ge and a single, symmetric Lamb-type guided-wave mode, we calculate the transient strain profiles excited in a wedge specimen and then apply both kinematical- and dynamical-scattering methods to simulate the resulting UEM bright-field images. While measurable contrast strengths arising from the phonon wavetrains are found for optimally oriented specimens using both approaches, incorporation of dynamical scattering effects via a multi-slice method returns better qualitative agreement with experimental observations. Contrast strengths arising solely from phonon-induced local lattice deformations are increased by nearly an order of magnitude when incorporating multiple electron scattering effects. We also explicitly demonstrate the effects of changes in global specimen orientation on the observed contrast strength, and we discuss the implications for increasing the sophistication of the model with respect to quantification of phonon properties from UEM images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA