Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Small ; : e2401942, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593325

RESUMO

Solar energy conversion technologies, particularly solar-driven photothermal conversion, are both clean and manageable. Although much progress has been made in designing solar-driven photothermal materials, significant challenges remain, not least the photobleaching of organic dyes. To tackle these issues, micro-carbonized polysaccharide chains, with carbon dots (CDs) suspended from the chains, are conceived, just like grapes or tomatoes hanging from a vine. Carbonization of sodium carboxymethyl cellulose (CMC) produces just such a structure (termed CMC-g-CDs), which is used to produce an ultra-stable, robust, and efficient solar-thermal film by interfacial interactions within the CMC-g-CDs. The introduction of the CDs into the matrix of the photothermal material effectively avoided the problem of photobleaching. Manipulating the interfacial interactions (such as electrostatic interactions, van der Waals interactions, π-π stacking, and hydrogen bonding) between the CDs and the polymer chains markedly enhances the mechanical properties of the photothermal film. The CMC-g-CDs are complexed with Fe3+ to eliminate leakage of the photothermal reagent from the matrix and to solve the problem of poor water resistance. The resulting film (CMC-g-CDs-Fe) has excellent prospects for practical application as a photothermal film.

2.
J Environ Manage ; 351: 119676, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052144

RESUMO

Cuprous oxide (Cu2O) nanoparticles (NPs) was anchored on wood by simple spraying method, then both soft and hard wood has been endowed efficient function photocatalytic degradation toward organic dyes and formaldehyde gas synergistically. The best recycle ability of wood based photocatalyst toward organic pollutants was achieved, which was characterized by photocatalytic degradation efficiency of methylene blue (MB) more than 95% after 100 cycles, and formaldehyde gas over 85% after 60 cycles. Cu2O NPs@wood performed much lower forbidden bandwidth (Eg), which accelerated to generate much more radical of e- and finally promoted the capacity of photocatalytic degradation. The proposed Cu2O NPs@wood catalysts has potential to be applied both in the field of wastewater and air pollution remediation.


Assuntos
Nanopartículas , Madeira , Águas Residuárias , Corantes , Formaldeído
3.
Molecules ; 28(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37110772

RESUMO

Nowadays, the fast expansion of the economy and industry results in a considerable volume of wastewater being released, severely affecting water quality and the environment. It has a significant influence on the biological environment, both terrestrial and aquatic plant and animal life, and human health. Therefore, wastewater treatment is a global issue of great concern. Nanocellulose's hydrophilicity, easy surface modification, rich functional groups, and biocompatibility make it a candidate material for the preparation of aerogels. The third generation of aerogel is a nanocellulose-based aerogel. It has unique advantages such as a high specific surface area, a three-dimensional structure, is biodegradable, has a low density, has high porosity, and is renewable. It has the opportunity to replace traditional adsorbents (activated carbon, activated zeolite, etc.). This paper reviews the fabrication of nanocellulose-based aerogels. The preparation process is divided into four main steps: the preparation of nanocellulose, gelation of nanocellulose, solvent replacement of nanocellulose wet gel, and drying of nanocellulose wet aerogel. Furthermore, the research progress of the application of nanocellulose-based aerogels in the adsorption of dyes, heavy metal ions, antibiotics, organic solvents, and oil-water separation is reviewed. Finally, the development prospects and future challenges of nanocellulose-based aerogels are discussed.

4.
Molecules ; 28(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687144

RESUMO

Using chitosan as a raw material, 1,8-naphthimide as the fluorescent chromophore, and sulfur-containing compounds as the recognition groups, a novel naphthimide-functionalized chitosan probe, CS-BNS, for the detection of ClO- was successfully synthesized. The modification of chitosan was verified by SEM, XRD, FTIR, mapping, 13C-NMR, TG and the structure of the probe molecule was characterized. The identification performance of the probes was studied using UV and fluorescence spectrophotometers. The results show that CS-BNS exhibits a specific response to ClO- based on the oxidative reaction of ClO- to the recognition motifs, as well as a good resistance to interference. And the probe has high sensitivity and fast response time, and can complete the detection of ClO- in a pure water system within 60 s. The probe can also quantify ClO- (y = 30.698x + 532.37, R2 = 0.9833) with a detection limit as low as 0.27 µM. In addition, the combination of the probe with smartphone technology enables the visualization and real-time monitoring of ClO-. Moreover, an identification system for ClO- was established by combining the probe with smartphone technology, which realized the visualization and real-time monitoring of ClO-.

5.
J Org Chem ; 87(13): 8515-8524, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35731803

RESUMO

Here, we report a novel and facile protocol for the synthesis of benz[c,d]indol-2-imines via palladium-catalyzed C-C and C-N coupling of 8-halo-1-naphthylamines with isocyanides in a single step. The reaction features broad substrate scopes and mild conditions, providing an efficient alternative for the construction of antiproliferative agents and BET bromodomain inhibitors. If 0.1 mL of H2O was added to this reaction, the N-substituted amino-1-naphthylamides could be obtained easily.


Assuntos
Iminas , Paládio , Catálise , Cianetos/química , Iminas/química , Estrutura Molecular , Paládio/química
6.
Langmuir ; 36(23): 6399-6410, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32423216

RESUMO

In this work, two macrocyclic hosts, named hydroxylatopillar[6]arene and dihydroxylatopillar[6]arene (HP6, 2HP6), are proposed. We found that the reduction of Au3+ to Au0 can success by using HP6 or 2HP6 as a reductant and stabilizing agent. At the end of HP6/2HP6, hydroxyl (-OH) groups were used as a reductant to reduce Au3+ to Au0. At the same time, -OH on HP6/2HP6 was oxidized to -COOH, and then the formed -COOH can be used as the stabilizer to prevent the infinite growth of AuNPs. The cellulose nanocrystals (CNCs) prepared by a clean and nonpolluting method were used as carriers to load AuNPs on them. The CNCs were applied for the adsorption of methylene blue (MB), and then the MB was catalytically degraded by HP6/2HP6-AuNPs-CNC. Besides, the HP6/2HP6-AuNPs-CNC showed remarkable catalytic performance for reducing nitro to the amino group in 4-nitrophenol. The advantages of clean and green synthesis make the HP6/2HP6-AuNPs-CNC a hybrid material and its application sustainable.

7.
Int J Biol Macromol ; : 133081, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866275

RESUMO

To reduce the release of volatile organic compounds (VOCs) from formaldehyde-based adhesives at the source, the use of low-toxicity and biodegradable glyoxal instead of formaldehyde for the preparation of novel urea-glyoxal resins is a simple and promising strategy. The limited water resistance and adhesive strength of the new urea-glyoxal resins (UG) restrict their extensive application. This study prepared a high-performance, water-resistant WP-UG wood adhesive by combining UG prepolymer with wheat gluten protein (WP). FTIR, XRD, and XPS confirmed the existence of a chemical reaction between the two components, and thermal analysis showed that WP-UG plywood had better thermal stability. Evaluation of the gluing properties revealed that the dry and wet strengths of WP-UG adhesive bonded plywood reached 1.39 and 0.87 MPa, respectively, which were significantly higher than those of UG resin by 35 % and 314 %. The bond strength increased from 0 to 0.89 MPa after immersion in water at 63 °C for 3 h. The results indicated that the introduction of WP promoted the formation of a more complex and tightly packed crosslinking network and developed a glyoxal-based adhesive with high bond strength and water resistance. This study provides a new green pathway for novel urea-formaldehyde binders to replace harmful formaldehyde-based binders, which helps to increase their potential application value in the wood industry.

8.
J Colloid Interface Sci ; 660: 597-607, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266341

RESUMO

Enhancing the performance of layered nickel-cobalt double hydroxides (NiCo-LDH) as electrode materials for supercapacitors represents a promising strategy for optimizing energy storage systems. However, the complexity of the preparation method for electrode materials with enhanced electrochemical performance and the inherent defects of nickel-cobalt LDH remain formidable challenges. In this study, we synthesized acetate-ion-intercalated NiCo-LDH (NCLA) through a simple one-step hydrothermal method. The physical and chemical structural properties and supercapacitor characteristics of the as-prepared NCLA were systematically characterized. The results indicated that the introduction of Ac- engendered a distinctive tetragonal crystal structure in NiCo-LDH, concomitant with a reduced interlayer spacing, thus enhancing structural stability. Electrochemical measurements revealed that NCLA-8 exhibited a specific capacitance of 1032.2 F g-1 at a current density of 1 A g-1 and a high specific capacitance of 922 F g-1 at 10 A g-1, demonstrating a rate performance of 89.3%. Furthermore, NCLA-8 was used to construct the positive electrode of an asymmetric supercapacitor, while the negative electrode was composed of activated carbon. This configuration resulted in an energy density of 67.7 Wh kg-1 at a power density of 800 W kg-1. Remarkably, the asymmetric supercapacitor retained 82.8% of its initial capacitance following 3000 charge-discharge cycles at a current density of 10 A g-1. Thus, this study demonstrates the efficacy of acetate-ion intercalation in enhancing the electrochemical performance of NiCo-LDH, establishing it as a viable electrode material for supercapacitors.

9.
Int J Biol Macromol ; 262(Pt 1): 130067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336318

RESUMO

The use of metal catalysts during the production process of cellulose acetate (CA) film can have an impact on the environment, due to their toxicity. Diphenyl phosphate (DPP) was used instead of toxic metal catalyst to react with cellulose acetate, tannin (T) and caprolactone (CL) for preparation of cellulose acetate-caprolactone-tannin (CA-CL-T) film. The results show that DPP can produce a cross-linked network structure composed of tannin, caprolactone and cellulose acetate. The maximum molecular weight reached 113,260 Da. The introduction of tannin and caprolactone into cellulose acetate caused the resulting CA-CL-T film acquire excellent strengthening/toughening effect, in which a tensile strength of 23 MPa and elongation at break of 18 % were attained. More importantly, the resistance of the film to UV radiation was significantly improved with the tannin addition, which was corroborated by the CA-CL-T film still exhibiting a tensile strength of 13 MPa and elongation at break around 13 % after continuous exposure to UV radiation for 9 days. On the other hand, the insertion of caprolactone provoked enhancement of the overall moisture resistance. Five days treatment of the films with Penicillium sp. induced gradual drop in quality, indicating the CA-CL-T film show response to biodegradation. In all, the effective crosslinking between the components of the developed material is responsible for the acquired set of these distinct characteristics.


Assuntos
Caproatos , Celulose/análogos & derivados , Lactonas , Taninos , Resistência à Tração
10.
Int J Biol Macromol ; 258(Pt 2): 128994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157632

RESUMO

Non-isocyanate polyurethane (NIPU) as a new type of polyurethane material has become a hot research topic in the polyurethane industry due to its no utilization of toxic isocyanates during the synthesis process. And the developing on recyclable biomass materials has also much attention in the industrial sector, hence the preparation and application of bio-based NIPU has also become a very meaningful study work. So, in this paper, tannin as a biomass material was used to synthesize tannin based non-isocyanate polyurethanes (TNIPU) resin, and then successfully prepared a self-blowing TNIPU foam at room temperature by using formic acid as initiator and glutaraldehyde as cross-linking agent. The compressive strength of this foam as high as 0.8 MPa, which is an excellent compressive performance. Meanwhile it will return to the state before compression when removing the pressure. This indicating that the foam has good toughness. In addition, formic acid can react with the amino groups in TNIPU to form amide substances, and generated enough heat to initiate the foaming process. Glutaraldehyde, as a crosslinking agent, reacts with the amino group in TNIPU to form a network structure system. By scanning electron microscope (SEM) observation of the cell shapes, it can be seen that the foam cells were uniform in size and shape, and the cell pores showed open and closed cells. The limiting oxygen index (LOI) tested value of this TNIPU foam is 24.45 % without any flame retardant added, but compared to the LOI value of polyurethane foam (17 %-19 %), TNIPU foam reveal a better fire resistance. It has a wider application prospect.


Assuntos
Formiatos , Isocianatos , Poliuretanos , Taninos , Glutaral
11.
Int J Biol Macromol ; 256(Pt 2): 128399, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007014

RESUMO

To develop a green and facile adsorbent for removing indoor polluted formaldehyde (HCHO) gas, the biomass porous nanofibrous membranes (BPNMs) derived from microcrystalline cellulose/chitosan were fabricated by electrospinning. The enhanced chemical adsorption sites with diverse oxygen (O) and nitrogen (N)-containing functional groups were introduced on the surface of BPNMs by non-thermal plasma modification under carbon dioxide (CO2) and nitrogen (N2) atmospheres. The average nanofiber diameters of nanofibrous membranes and their nanomechanical elastic modulus and hardness values decreased from 341 nm to 175-317 nm and from 2.00 GPa and 0.25 GPa to 1.70 GPa and 0.21 GPa, respectively, after plasma activation. The plasma-activated nanofibers showed superior hydrophilicity (WCA = 0°) and higher crystallinity than that of the control. The optimal HCHO adsorption capacity (134.16 mg g-1) of BPNMs was achieved under a N2 atmosphere at a plasma power of 30 W and for 3 min, which was 62.42 % higher compared with the control. Pyrrolic N, pyridinic N, CO and O-C=O were the most significant O and N-containing functional groups for the improved chemical adsorption of the BPNMs. The adsorption mechanism involved a synergistic combination of physical and chemical adsorption. This study provides a novel strategy that combines clean plasma activation with electrospinning to efficiently remove gaseous HCHO.


Assuntos
Celulose , Quitosana , Nanofibras , Nanofibras/química , Quitosana/química , Gases , Adsorção , Porosidade , Formaldeído/química , Nitrogênio
12.
Int J Biol Macromol ; 260(Pt 2): 129660, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253145

RESUMO

Cellulose is the most abundant natural polymer with good biocompatibility and easy modification characteristics. In this paper, a novel cellulose fluorescence probe CNS for detecting ClO- was prepared by modifying microcrystalline cellulose (MCC). The fluorescence detection results indicate that CNS exhibits a highly specific "ratiometric" and "colorimetric" fluorescence response to ClO-. In the presence of ClO-, the fluorescence color changes from green to cyan. In addition, the color of the solution changes from yellow to colorless, which can be observed with the "naked eye". Considering the good selectivity and anti-interference ability of CNS, the probe can be used for the detection of ClO- in real water samples. Importantly, CNS composite films and test papers were prepared and showed practicability in the detection of ClO-, highlighting its broad application potentials.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Corantes Fluorescentes/química , Espectrometria de Fluorescência , Colorimetria/métodos , Celulose
13.
Int J Biol Macromol ; 269(Pt 1): 132043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702005

RESUMO

Starch adhesive is a commonly used bonding glue that is sustainable, formaldehyde-free and biodegradable. However, there are obviously some problems related to its high viscosity, poor water and mildew resistance. Hence, exploring a starch-based adhesive with good properties that satisfies the requirements of wood processing presents the context of the current research. Thus, corn starch was used as raw material to form oxidized starch (OCS) via oxidation using sodium periodate, it was reacted with a synthesis polyurea compound that prepared from hexanediamine-urea (HU) obtained by deamination to yield a oxidized starch-hexanediamine-urea adhesive (denoted hereafter as OCSHU). The oxidation process was optimized in terms of oxidant concentration, reaction time and temperature. Furthermore, the impact of HU addition on the mechanical properties of the adhesive was explored. Results indicate adhesive exhibited outstanding shear strength, when 13 % of NaIO4 was used as an oxidant to treat starch at 55 °C for 24 h, and involved in a subsequent reaction with 40 % of HU. The dry shear strength, 24 h cold water strength, 3 h hot water strength and 3 h boiling water strength are 1.84, 1.50, 1.32, and 1.31 MPa. Meantime, OCSHU adhesive solution revealed good storage stability whereas cured resin exhibited mildew resistance. The developed adhesive is a simple and green biomass wood adhesive.


Assuntos
Adesivos , Amido , Água , Zea mays , Amido/química , Água/química , Adesivos/química , Zea mays/química , Oxirredução , Temperatura , Resistência ao Cisalhamento , Ureia/química
14.
Int J Biol Macromol ; 265(Pt 2): 131053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521299

RESUMO

How to efficiently produce high performance plywood is of particular interest, while its sensitivity to moisture is overcome. This paper presents a simple and scalable strategy for the preparation of high-performance plywood based on the chemical bonding theory; a wood interfacial functionalized platform (WIFP) based on (3-aminopropyl) triethoxysilane (APTES) was established. Interestingly, the APTES-enhanced dialdehyde cellulose-based adhesive (DAC-APTES) was able to effectively establish chemically active adhesive interfaces; the dry/wet shear strength of WIFP/DAC-APTES adhesive was 3.15/1.31 MPa, which was much higher than 0.7 MPa (GB/T 9846-2015). The prepared plywood showed excellent wood-polymer interface adhesion, which exceeded the force that the wood itself could withstand. In addition, the DAC-APTES adhesive exhibits moisture evaporation-induced curing behavior at room temperature and can easily support the weight of an adult weighing 65.7 Kg. This research provides a novel approach for functionalized interface design of wood products, an effective means to prepare high-performance plywood.


Assuntos
Celulose , Silanos , Madeira , Adulto , Humanos , Polímeros , Propilaminas
15.
Int J Biol Macromol ; 265(Pt 2): 131111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522700

RESUMO

Iron ions play a crucial role in the environment and the human body. Therefore, developing an effective detection method is crucial. In this paper, we report CNS2, a chitosan-based fluorescent probe utilizing naphthalimide as a fluorophore. CNS2 is designed to "quench" its own yellow fluorescence through the specific binding of compounds containing enol structures to Fe3+. Studying the fluorescence lifetime of CNS2 in the presence or absence of Fe3+ reveals that the quenching mechanism is static. The presence of multiple recognition sites on the chitosan chain bound to Fe3+ gave CNS2 rapid recognition (1 min) and high sensitivity, with a detection limit as low as 0.211 µM. Moreover, the recognition of Fe3+ by CNS2 had a good specificity and was not affected by interferences. More importantly, in this study, CNS2 was successfully utilised to prepare fluorescent composite membranes and to detect Fe3+ in real water samples and a variety of food samples. The results show that the complex sample environment still does not affect the recognition of Fe3+ by CNS2. All the above experiments obtained more satisfactory results, which provide strong support for the detection of Fe3+ by the probe CNS2 in practical applications.


Assuntos
Quitosana , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Água , Quitosana/química , Ferro/química , Fluorescência , Espectrometria de Fluorescência/métodos
16.
Int J Biol Macromol ; 264(Pt 1): 130020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336332

RESUMO

Wood-based panels find widespread application in the furniture and construction industries. However, over 90 % of adhesives used are synthesized with formaldehyde, leading to formaldehyde emission and associated health risks. In this study, an entirely bio-based adhesive (OSL) was innovatively proposed through the condensation of multi-aldehyde derived from the oxidization of sucrose (OS) with sodium lignosulfonate (L). This approach positioned oxidized sucrose (OS) as a viable substitute for formaldehyde, ensuring safety, simplicity, and enhance water resistance upon reaction with L. The optimization of the OSL adhesive preparation process involved determining the oxidant level for high sucrose conversion to aldehyde (13 % based on sucrose), the mass ratio of OS to L (0.8), and hot-pressing temperature (200 °C). Notably, the shear strength of 3-plywood bonded with the developed adhesive (1.04 MPa) increased to 1.42 MPa after being immersed in hot water at 63 ±â€¯3 °C for 3 h. Additionally, the plywood specimens exhibited excellent performance after soaking in boiling water for 3 h, resulting in a shear strength of 1.03 MPa. Chemical analysis using Fourier-transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed an addition reaction between L and OS, forming a dense network structure, effectively enhanceing the water resistance of OSL adhesives. Furthermore, compared with lignin-formaldehyde resin adhesive (LF), the OSL adhesive exhibited superior wet shear strength. This study offered an innovative approach for developing lignin-based adhesives utilizing a biomass aldehyde (OS), as a promising substitute for formaldehyde in the wood industry. The findings indicated that this approach may advance lignin-based adhesives, ensuring resistance to strength deterioration under highly humid environmental conditions.


Assuntos
Lignina , Água , Lignina/química , Aldeídos , Adesivos/química , Formaldeído/química , Sacarose
17.
Int J Biol Macromol ; 259(Pt 2): 129373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216010

RESUMO

Fe3+ is one of the most widely distributed and abundant elements on earth. Realizing efficient and real-time monitoring of Fe3+ is of great significance for the natural environment and the health of living organisms. In this paper, a flavonol-labelled cellulose-based fluorescent probe (ACHM) was synthesized by using dialdehyde cellulose (DAC) as the backbone and combining with flavonol derivatives (AHM - 1). The mechanism of recognizing Fe3+ was verified by characterizing the structure of ACHM by NMR, HRMS (High Resolution Mass Spectrometry), FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), TG (Thermogravimetry) and SEM (Scanning Electron Microscopy). The H2O solution of the probe ACHM showed good fluorescence properties. It has quenching fluorescence properties for Fe3+, with a low limit of detection (LOD) of 0.10 µM and a fast response time of only 20 s. In addition, in order to expand the application range of the probe, ACHM was prepared as a fluorescent composite film with an average tensile strength of 32.9 MPa and an average elongation at break of 3.39 %. It shows its superiority in mechanical properties. The probe also demonstrated its practical application value for detecting Fe3+ in smartphone imaging applications.


Assuntos
Corantes Fluorescentes , Smartphone , Resistência à Tração , Tecnologia , Celulose/química
18.
ACS Appl Mater Interfaces ; 16(6): 7950-7960, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306456

RESUMO

Polysaccharide-based adhesives, especially chitosan (CS)-derived adhesives, serve as promising sustainable alternatives to traditional adhesives. However, most demonstrate a poor adhesive strength. Inspired by the inherent layered structure of marine arthropods (lobsters), a core-shell structure (SiO2-NH2@OPG) with amine-functionalized silica (SiO2-NH2) as the core and oxidized pyrogallol (OPG) as the shell is prepared in this study. The compound is blended with CS to produce a structural biomimetic wood adhesive (SiO2-NH2@OPG/CS) with excellent performance. In addition to thermocompressive curing, this adhesive exhibits a water-evaporation-induced curing behavior at room temperature. With reference to the design mechanism of the lobster cuticle, this microphase-separated structure consists of clustered nanofibers with varying amounts of SiO2-NH2@OPG particles between the fibers. This intriguing microphase structure and its mechanical effects could offer a powerful solution for improving the functional modification of wood composites.


Assuntos
Quitosana , Quitosana/química , Adesivos/química , Biomimética , Dióxido de Silício
19.
Environ Pollut ; 351: 124026, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663509

RESUMO

To develop a highly efficient adsorbent to remediate and remove hexavalent chromium ions (Cr(VI)) from polluted water, cellulose acetate (CA) and chitosan (CS), along with metal oxides (titanium dioxide (TiO2) and ferroferric oxide (Fe3O4)), and a zirconium-based metal-organic framework (UiO-66) were used to fabricate the composite porous nanofiber membranes through electrospinning. The adsorption performance, influencing factors, adsorption kinetics and isotherms of composite nanofiber membranes were comprehensively investigated. The multi-layer membrane with interpenetrating nanofibers and surface functional groups enhanced the natural physical adsorption and provided potential chemical sites. The thermal stability was improved by introducing TiO2 and UiO-66. CA/CS/UiO-66 exhibited the highest adsorption capacity (118.81 mg g-1) and removal rate (60.76%), which were twice higher than those of the control. The correlation coefficients (R2) of all the composite nanofibers regressed by the Langmuir model were significantly higher than those by the Freundlich model. The pseudo-first-order kinetic curve of CA/CS composite nanofibers showed the highest R2 (0.973), demonstrating that the whole adsorption process involved a combination of strong physical adsorption and weak chemical adsorption by the amino groups of CS. However, the R2 values of the pseudo-second-order kinetic model increased after incorporating TiO2, Fe3O4, and UiO-66 into the CA/CS composite nanofiber membranes since an enhanced chemical reaction with Cr (VI) occured during the adsorption.


Assuntos
Cromo , Estruturas Metalorgânicas , Nanofibras , Titânio , Poluentes Químicos da Água , Cromo/química , Nanofibras/química , Estruturas Metalorgânicas/química , Adsorção , Poluentes Químicos da Água/química , Titânio/química , Porosidade , Biomassa , Cinética , Zircônio/química , Quitosana/química , Celulose/química , Celulose/análogos & derivados
20.
Int J Biol Macromol ; 270(Pt 2): 132500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763234

RESUMO

Bamboo, as a renewable bioresource, exhibits advantages of fast growth cycle and high strength. Bamboo-based composite materials are a promising alternative to load-bearing structural materials. It is urgent to develop high-performance glued-bamboo composite materials. This study focused on the chemical bonding interface to achieve high bonding strength and water resistance between bamboo and dialdehyde cellulose-polyamine (DAC-PA4N) adhesive by activating the bamboo surface. The bamboo surface was initially modified in a directional manner to create an epoxy-bamboo interface using GPTES. The epoxy groups on the interface were then chemically crosslinked with the amino groups of the DAC-PA4N adhesive, forming covalent bonds within the adhesive layer. The results demonstrated that the hot water strength of the modified bamboo was improved by 75.8 % (from 5.17 to 9.09 MPa), and the boiling water strength was enhanced by 232 % (from 2.10 to 6.99 MPa). The bonding and flexural properties of this work are comparable to those of commercial phenolic resin. The activation modification of the bamboo surface offers a novel approach to the development of low-carbon, environmentally friendly, and sustainable bamboo engineering composites.


Assuntos
Adesivos , Celulose , Sasa , Celulose/química , Celulose/análogos & derivados , Adesivos/química , Sasa/química , Propriedades de Superfície , Água/química , Resinas Epóxi/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA