Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195659

RESUMO

Grouting ducts (containing steel strands) are widely used to increase the structural strengths of infrastructures. The determination of the steel strand's integrity inside of ducts and the grouting quality are important for a strength evaluation of the structure. In this study, a capacitive sensing technique was applied to identify the cross-sectional distribution of the steel strands. The distribution was expressed in polar coordinates in an external post-tensioned pre-stressed duct model. An improved capacitive sensor structure was designed, which consisted of four electrodes, and different electrode-pairs were used to determine various locations' information of the steel strands. Two rounds of measurements were conducted using the designed sensor to detect the angle (θ) and center distance (r) of the steel strand in the duct. The simulated and experimental results are presented and analyzed. In general, it is difficult to locate the angle of a steel strand directly from first-round capacitance measurements by analyzing the experimental results. Our method based on Q-factor analysis was presented for the position detection of a steel bar in an external post-tensioned pre-stressed duct. The center distance of the steel bar could be identified by second-round capacitance measurements. The processed results verified the effectiveness of the proposed capacitive sensor structure. Thus, the capacitive sensing technique exhibited potential for steel strand cross-section distribution detection in external post-tensioned pre-stressed ducts.

2.
Sensors (Basel) ; 18(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518058

RESUMO

Scientists require methods to monitor the distribution of gas bubbles in gas-liquid bubble column reactors. One non-destructive method that can potential satisfy this requirement in industrial situations is ultrasonic transmission tomography (UTT). In this paper, an ultrasonic transmission tomography sensor is designed for measuring bubble distribution in a reactor. Factors that influence the transducer design include transmission energy loss, the resonance characteristics and vibration modes of the transducer, and diffusion angles of the transducers, which are discussed. For practical application, it was found that an excitation frequency of 300 kHz could identify the location and size of gas bubbles. The vibration mode and diffusion also directly affect the quality of the imaging. The geometric parameters of the transducer (a cylinder transducer with a 10 mm diameter and 6.7 mm thickness) are designed to achieve the performance requirements. A UTT system, based on these parameters, was built in order to verify the effectiveness of the designed ultrasonic transducer array. A Sector-diffusion-matrix based Linear Back Projection (SLBP) was used to reconstruct the gas/liquid two-phase flow from the obtained measurements. Two other image processing methods, based on SLBP algorithm named SLBP-HR (SLBP-Hybrid Reconstruction) and SLBP-ATF (SLBP-Adaptive Threshold Filtering), were introduced, and the imaging results are presented. The imaging results indicate that a gas bubble with a 3 mm radius can be identified from reconstructed images, and that three different flow patterns, namely, single gas bubble, double gas bubble with different diameters, and eccentric flow, can be identified from reconstructed images. This demonstrates that the designed UTT sensor can effectively measure bubble distribution in gas-liquid bubble column reactors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA