Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 3): 126466, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37659494

RESUMO

Early fire detection is an efficient method to mitigate disastrous fire loss. However, developing smart low-temperature fire-warning sensors that better diminish fire hazards, especially those caused by household appliances, is still challenging. Herein, a salts-modified chitosan (salts-modified CS) based sensor with integrated fire-warning and humidity-monitoring capability is proposed using an easy assembling method. This sensor can respond to temperatures as low as 50 °C and a flame within 2 s quickly and detect relative humidity (RH) range above 50 % at 50 °C and 75 °C sensitively. This system can be reusable for multiple ignitions and works in high-humidity environments (>50 %). Furthermore, the comparison between different salts-modified CS films is carried out to elucidate the mechanism of the formation of electric current under the joint driven by temperature and humidity. Moreover, real-time temperature and RH monitoring can be achieved with a wireless transmission section. This design shows a promising approach for multifunctional CS-based sensors and paves a path to developing a new generation of smart fire-warning detectors.


Assuntos
Quitosana , Umidade , Sais , Temperatura , Temperatura Baixa
2.
ACS Appl Mater Interfaces ; 8(1): 881-90, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26709944

RESUMO

An organophosphorous hybrid (BM@Al-PPi) with unique core-shell structure was prepared through hybridization reaction between boehmite (BM) as the inorganic substrate and phenylphosphinic acid (PPiA) as the organic modifier. Fourier transform infrared spectra (FTIR), solid state (31)P and (27)Al magic angle spinning nuclear magnetic resonance, X-ray diffraction, and element analysis were used to investigate the chemical structure of the hybrids, where the microrod-like core was confirmed as Al-PPi aggregates generated from the reaction between BM and PPiA, and those irregular nanoparticles in the shell belonged to residual BM. Compared with the traditional dissolution-precipitation process, a novel analogous suspension reaction mode was proposed to explain the hybridization process and the resulting product. Scanning electronic microscopy further proved the core-shell structure of the hybrids. BM exhibited much higher initial decomposition temperature than that of Al-PPi; therefore, the hybrid showed better thermal stability than Al-PPi, and it met the processing temperature of semi-aromatic polyamide (HTN, for instance) as an additive-type flame retardant. Limiting oxygen index and cone calorimetric analysis suggested the excellent flame-retardant performance and smoke suppressing activity by adding the resulting hybrid into HTN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA