Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37514731

RESUMO

In this paper, three studies on modal bridge expansion joints were conducted through experiments. The advantages and disadvantages of acceleration and fiber optic strain sensors in the tested modal expansion joints were compared. Secondly, the variation in the natural frequency of the modal bridge expansion joints at different concrete curing periods was investigated. Finally, the effect of damage on natural frequency in different parts (the center beam, the support bar, and concrete in the anchorage zone) of the modal bridge expansion joint was analyzed. For this purpose, three specimens were cast, each with six damage states. Manual methods damaged the specimens. An impact hammer was used to excite the corresponding parts of the different components. The results showed that the acceleration sensor is optimal for the modal bridge expansion joint test. The specimen's natural frequency increased with the curing time's growth. The natural frequency increased by 10 Hz from day 3 to day 28 of curing. With the gradual increase in damage, the natural frequencies of the center beam and support bar showed a gradual decreasing trend. The damage to the concrete in the anchorage zone caused less significant changes in the natural frequency, but the overall natural frequency still had a decreasing trend. The sensitivity of each frequency to the damage was different in different parts.

2.
Animals (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36830386

RESUMO

To achieve sustainable development of the poultry industry, the effective conservation of genetic resources has become increasingly important. In the present study, we systematically elucidated the population structure, conservation priority, and runs of homozygosity (ROH) patterns of Chinese native chicken breeds. We used a high-density genotyping dataset of 157 native chickens from eight breeds. The population structure showed different degrees of population stratification among the breeds. Chahua chicken was the most differentiated breed from the other breeds (Nei = 0.0813), and the Wannan three-yellow chicken (WanTy) showed the lowest degree of differentiation (Nei = 0.0438). On the basis of contribution priority, Xiaoshan chicken had the highest contribution to the total gene diversity (1.41%) and the maximum gene diversity of the synthetic population (31.1%). WanTy chicken showed the highest contribution to the total allelic diversity (1.31%) and the maximum allelic diversity of the syntenic population (17.0%). A total of 5242 ROH fragments and 5 ROH island regions were detected. The longest ROH fragment was 41.51 Mb. A comparison of the overlapping genomic regions between the ROH islands and QTLs in the quantitative trait loci (QTL) database showed that the annotated candidate genes were involved in crucial economic traits such as immunity, carcass weight, drumstick and leg muscle development, egg quality and egg production, abdominal fat precipitation, body weight, and feed intake. In conclusion, our findings revealed that Chahua, Xiaoshan, and WanTy should be the priority conservation breeds, which will help optimize the conservation and breeding programs for Chinese indigenous chicken breeds.

3.
Environ Sci Process Impacts ; 25(8): 1365-1373, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37405368

RESUMO

The mechanism of immobilization of heavy metals in the soil using biochar has been studied extensively. However, the decomposition of biochar by biological and abiotic factors can reactivate the immobilized heavy metals in soil. Previous research showed that the addition of biological calcium carbonate (bio-CaCO3) can significantly increase the stability of biochar. However, the influence of bio-CaCO3 on the ability of biochar to immobilize heavy metals remains unclear. Therefore, this study evaluated the effect of bio-CaCO3 on the use of biochar to immobilize the cationic heavy metal lead and the anionic heavy metal antimony. The addition of bio-CaCO3 not only significantly improved the passivation ability of Pb and Sb but also reduced their migration in the soil. Mechanistic studies have shown that the reasons for the enhanced ability of biochar to immobilize heavy metals can be summarized in three aspects. First, the introduced inorganic component CaCO3 can precipitate and exchange ions with lead and antimony. Second, the N element in the organic component of bio-CaCO3 underwent polycondensation with the organic carbon in biochar to form pyridine N and pyrrole N structures, which can form a strong complex with lead and antimony. Pyridine N complexes more strongly than pyrrole N. Third, bio-CaCO3 increased the degree of aromatization and the surface π-electron density of biochar, which enhanced the ability of biochar to adsorb heavy metals. This study will provide a new concept for the application of biochar as an amendment to remediate heavy metals in the soil.


Assuntos
Metais Pesados , Poluentes do Solo , Antimônio/química , Chumbo , Carbonato de Cálcio , Solo/química , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química
4.
Chem Commun (Camb) ; 59(78): 11716-11719, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37702027

RESUMO

In this study, a facile ligand-protected strategy for preparing Cu@Cu2O and CuO nanoparticles is presented. The electrocatalyst efficacy of the CuO variant, particularly for CO2 reduction to multi-carbon products (C2+), is significant, boasting faradaic efficiencies (FEs) surpassing 85% and a current density peak at 340 mA cm-2. This exceptional performance markedly exceeds that of the Cu@Cu2O electrocatalyst. This observed enhancement in the electrosynthesis efficiency of C2+ is attributed to the abundant Cu0 active sites, which originate from the in situ electroreduction of CuO.

5.
Materials (Basel) ; 15(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888404

RESUMO

To improve interface bonding stress, early-strength self-compacting shrinkage-compensating high-performance concrete (ESS-HPC) was selected as an excellent strengthening material to investigate by direct shear test. Tests on seventeen Z-type specimens were carried out considering the ESS-HPC and ordinary concrete substrate (OCS) compressive strength grade, the ESS-HPC curing age, the OCS surface roughness, and the ratio of steel shear dowels as the variables. A bond stress-slip model of the interface was proposed via statistical fitting. The results show that the surface roughness and ratios of steel shear dowels had the most important influence on the shear bond stress. The shear bond stress of the specimens without steel shear dowels increased by almost 15% as the ESS-HPC strength grade changed from C60 to C75. With the increase in the curing age, the shear bond stress showed a changing trend of first increasing and then decreasing. The coarser surface with the drilling method can improve the shear bond stress by 89%. To achieve a secondary increase in the shear bond stress of specimens with steel shear dowels, the minimum ratio of steel shear dowels was 0.83%. Analytical equations are proposed in combination with the CEB-FIB Model 2010 and AASHTO Model. The calculated results show reasonable agreement with the experimental results within an acceptable range.

6.
Genes Genomics ; 40(10): 1091-1099, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29951965

RESUMO

Semi-dwarfism is an agronomically important trait in breeding for stable high yields and for resistance to damage by wind and rain (lodging resistance). Many QTLs and genes causing dwarf phenotype have been found in maize. However, because of the yield loss associated with these QTLs and genes, they have been difficult to use in breeding for dwarf stature in maize. Therefore, it is important to find the new dwarfing genes or materials without undesirable characters. The objectives of this study were: (1) to figure out the inheritance of semi-dwarfism in mutants; (2) mapping dwarfing gene or QTL. Maize inbred lines '18599' and 'DM173', which is the dwarf mutant derived from the maize inbred line '173' through 60Co-γ ray irradiation. F2 and BC1F1 population were used for genetic analysis. Whole genome resequencing-based technology (QTL-seq) were performed to map dwarfing gene and figured out the SNP markers in predicted region using dwarf bulk and tall bulk from F2 population. Based on the polymorphic SNP markers from QTL-seq, we were fine-mapping the dwarfing gene using F2 population. In F2 population, 398 were dwarf plants and 135 were tall plants. Results of χ2 tests indicated that the ratio of dwarf plants to tall plants was fitted to 3:1 ratio. Furthermore, the χ2 tests of BC1F1 population showed that the ratio was fitted to 1:1 ratio. Based on QTL-seq, the dwarfing gene was located at the region from 111.07 to 124.56 Mb of chromosome 9, and we named it rht-DM. Using traditional QTL mapping with SNP markers, the rht-DM was narrowed down to 400 kb region between SNP-21 and SNP-24. The two SNPs were located at 0.43 and 0.11 cM. Segregation analysis of F2 and BC1F1 indicated that the dwarfing gene was likely a dominant gene. This dwarfing gene was located in the region between 115.02 and 115.42 Mb on chromosome 9.


Assuntos
Mutação , Locos de Características Quantitativas , Sequenciamento Completo do Genoma/métodos , Zea mays/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Zea mays/genética
7.
Front Plant Sci ; 8: 1355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824686

RESUMO

Maize stalk rot is a major fungal disease worldwide, and is difficult to control by chemical methods. Therefore, in maize breeding, quantitative trait loci (QTLs) conferring resistance are important for controlling the disease. Next-generation sequencing technologies are considered a rapid and efficient method to establish the association of agronomic traits with molecular markers or candidate genes. In the present study, we employed QTL-seq, which is a whole-genome resequencing-based approach, to identify candidate genomic regions conferring resistance to maize stalk rot. A novel resistance QTL Rgsr8.1 was finely mapped, conferring broad-spectrum resistance to Gibberella stalk rot (GSR). Segregation analysis in F2 and BC1F1 populations, which were derived from a cross between 18327 (Susceptible) and S72356 (Resistant), indicated that the resistance to GSR was likely to be a quantitatively inherited trait in maize. The result of QTL-seq showed that the resistance to GSR was mapped on chromosome 8 from 161.001 to 170.6 Mb. Based on the simple sequence repeat (SSR) markers, single-nucleotide polymorphism (SNP) markers, and the recombinant test, the location of Rgsr8.1 was narrowed down to 2.04 Mb, flanked by SSR-65 and SNP-25 markers at the physical location from 164.69 to 166.72 Mb based on the maize reference genome. In this region, two candidate resistant genes were found with, one auxin-responsive elements and the other encoding a disease resistance protein. In summary, these results will be useful in maize breeding programs to improve the resistance to GSR in maize.

9.
Neural Regen Res ; 12(5): 770-778, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28616034

RESUMO

To observe the effects of different acupuncture manipulations on blood pressure and target organ damage in spontaneously hypertensive rats (SHRs), this study used the reinforcing twirling method (1.5-2-mm depth; rotating needle clockwise for 360° and then counter clockwise for 360°, with the thumb moving heavily forward and gently backward, 60 times per minute for 1 minute, and retaining needle for 9 minutes), the reducing twirling method (1.5-2-mm depth; rotating needle counter clockwise for 360° and then clockwise for 360°, with the thumb moving heavily backward and gently forward, 60 times per minute for 1 minute, and retaining needle for 9 minutes), and the needle retaining method (1.5-2-mm depth and retaining the needle for 10 minutes). Bilateral Taichong (LR3) was treated by acupuncture using different manipulations and manual stimulation. Reinforcing twirling, reducing twirling, and needle retaining resulted in a decreased number of apoptotic cells, reduced Bax mRNA and protein expression, and an increased Bcl-2/Bax ratio in the hippocampus compared with the SHR group. Among these groups, the Bcl-2/Bax protein ratio was highest in the reducing twirling group, and the Bcl-2/Bax mRNA ratio was highest in the needle retaining group. These results suggest that reinforcing twirling, reducing twirling, and needle retaining methods all improve blood pressure and prevent target organ damage by increasing the hippocampal Bcl-2/Bax ratio and inhibiting cell apoptosis in the hippocampus in SHR.

10.
Dalton Trans ; (3): 464-74, 2005 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-15672190

RESUMO

An investigation into the dependence of the framework formation of coordination architectures on ligand spacers and terminal groups was reported based on the self-assembly of AgClO4 and eight structurally related flexible dithioether ligands, RS(CH2)nSR (Lan, R = ethyl group; Lbn, R = benzyl group, n= 1-4). Eight novel metal-organic architectures, [Ag(La1)3/2ClO4]n (1a), [Ag2(La2)2(ClO4)2]2 (2a), [AgLa3ClO4]n (3a), {[Ag(La4)2]ClO4}n (4a), [AgLb1ClO4]2 (1b), [Ag(Lb2)2]ClO4 (2b), {[Ag(Lb3)3/2(ClO4)1/2](ClO4)1/2}n (3b) and [Ag(Lb4)3/2ClO4]n(4b), were synthesized and structurally characterized by X-ray crystallography. Structure diversities were observed for these complexes: 1a forms a 2-D (6,3) net, while 2a is a discrete tetranuclear complex, in which the AgI ion adopts linear and tetrahedral coordination modes, and the S donors in each ligand show monodentate terminal and mu2-S bridging coordination fashions; 3a has a chiral helical chain structure in which two homo-chiral right-handed single helical chains (Ag-La3-)n are bound together through mu2-S donors, and simultaneously gives rise to left-handed helical entity (Ag-S-)n. In 4a, left- and right-handed helical chains formed by the ligands bridging AgI centers are further linked alternately by single-bridging ligands to form a non-chiral 2-D framework. 1b has a dinuclear structure showing obvious ligand-sustained Ag-Ag interaction, while 2b is a mononuclear complex; 3b is a 3-D framework formed by ClO4- linking the 2-D (6,3) framework, which is similar to that of 1a, and 4b has a single, double-bridging chain structure in which 14-membered dinuclear ring units formed through two ligands bridging two AgI ions are further linked by single-bridging ligands. In addition, a systematic structural comparison of these complexes and other reported AgClO4 complexes of analogous dithioether ligands indicates that the ligand spacers and terminal groups take essential roles on the framework formation of the AgI complexes, and this present feasible ways for adjusting the structures of such complexes by modifying the ligand spacers and terminal groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA