Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401504, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564787

RESUMO

As promising oxygen evolution reaction (OER) catalysts, spinel-type oxides face the bottleneck of weak adsorption for oxygen-containing intermediates, so it is challenging to make a further breakthrough in remarkably lowering the OER overpotential. In this study, a novel strategy is proposed to substantially enhance the OER activity of spinel oxides based on amorphous/crystalline phases mixed spinel FeNi2O4 nanosheets array, enriched with oxygen vacancies, in situ grown on a nickel foam (NF). This unique architecture is achieved through a one-step millisecond laser direct writing method. The presence of amorphous phases with abundant oxygen vacancies significantly enhances the adsorption of oxygen-containing intermediates and changes the rate-determining step from OH*→O* to O*→OOH*, which greatly reduces the thermodynamic energy barrier. Moreover, the crystalline phase interweaving with amorphous domains serves as a conductive shortcut to facilitate rapid electron transfer from active sites in the amorphous domain to NF, guaranteeing fast OER kinetics. Such an anodic electrode exhibits a nearly ten fold enhancement in OER intrinsic activity compared to the pristine counterpart. Remarkably, it demonstrates record-low overpotentials of 246 and 315 mV at 50 and 500 mA cm-2 in 1 m KOH with superior long-term stability, outperforming other NiFe-based spinel oxides catalysts.

2.
Small ; 18(12): e2107481, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35072363

RESUMO

Copper is known as a conductive metal but an inert catalyst for the hydrogen evolution reaction due to its inappropriate electronic structure. In this work, an active copper catalyst is prepared with high-energy surfaces by adopting the friction stir welding (FSW) technique. FSW can mix the immiscible Fe and Cu materials homogenously and heat them to a high temperature. Resultantly, α-Fe transforms into γ-Fe, and low-energy γ-Fe (100) and (110) surfaces induce the epitaxial growth of high-energy Cu (110) and (100) planes, respectively. After the removal of γ-Fe by acid etching, the copper electrode exposes high-energy surface and exhibits excellent acidic HER activity, even being superior to Pt foil at high current densities (>66 mA cm-2 ). Density functional theory calculation reveals that the high-energy surface favors the adsorption of hydrogen intermediate, thus accelerating the hydrogen evolution reaction. The epitaxial growth induced by FSW opens a new avenue toward engineering high-performance catalysts. In addition, FSW makes it possible to massively fabricate low-cost catalyst, which is advantageous to industrial application.

3.
Langmuir ; 38(4): 1471-1478, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042330

RESUMO

As a metal-free photocatalyst, graphitic carbon nitride (g-CN) shows great potential for photocatalytic water splitting, although its performance is significantly limited by structural defects due to incomplete polymerization. In the present work, we successfully synthesize highly conjugated g-CN nanofoam through an iodide substitution technique. The product possesses a high polymerization degree, low defect density, and large specific surface area; as a result, it achieves a hydrogen evolution rate of 9.06 mmol h-1 g-1 under visible light irradiation, with an apparent quantum efficiency (AQE) of 18.9% at 420 nm. Experimental analysis and theoretical calculations demonstrate that the recombination of photogenerated carriers at C-NHx defects was effectively depressed in the nanofoam, giving rise to the high photocatalytic activity.

4.
Langmuir ; 38(9): 2993-2999, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35212548

RESUMO

Metallic materials with unique surface structure have attracted much attention due to their unique physical and chemical properties. However, it is hard to prepare bulk metallic materials with special crystal faces, especially at the nanoscale. Herein, we report an efficient method to adjust the surface structure of a Cu plate which combines ion implantation technology with the oxidation-etching process. The large number of vacancies generated by ion implantation induced the electrochemical oxidation of several atomic layers in depth; after chemical etching, the Cu(100) planes were exposed on the surface of the Cu plate. As a catalyst for acid hydrogen evolution reaction, the Cu plate with (100) planes merely needs 273 mV to deliver a current density of 10 mA/cm2 because the high-energy (100) surface has moderate hydrogen adsorption and desorption capability. This work provides an appealing strategy to engineer the surface structure of bulk metallic materials and improve their catalytic properties.

5.
Phys Chem Chem Phys ; 24(16): 9188-9195, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383804

RESUMO

The work function can serve as a characteristic quantity to evaluate the catalytic activity due to its relationship with the surface structure of a material. However, what factors determine the influence of the work function on the electrochemical performance are still unclear. Herein, we elucidate the effect of the work function of Ag on the electrochemical reduction of CO2 to CO by controlling the ratio of exposed crystalline planes. To this end, the exposed surface of Ag powder was regulated by high-energy ball milling and its influence on CO2 reduction was investigated. The surface structure with more Ag(110) surface achieves higher activity and selectivity for CO production, resulting from the lower work function of Ag(110), which dramatically enhances the electron tunnelling probability during CO2 electroreduction. We found that a higher ratio of Ag(110) to Ag(100) leads to a lower work function and thus better electrochemical activity and selectivity. This study demonstrates a promising strategy to enhance the electrochemical performance of metal catalysts through tuning their work functions via regulating exposed crystalline planes.

6.
Angew Chem Int Ed Engl ; 61(26): e202204541, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35441770

RESUMO

The electrocatalytic nitrogen oxidation reaction (NOR) to generate nitrate is gaining increasing attention as an alternative approach to the conventional industrial manufacture. But, current progress in NOR is limited by the difficulties in activation and conversion of the strong N≡N bond (941 kJ mol-1 ). Herein, we designed to utilize sulfate to enhance NOR performance over an Rh electrocatalyst. After the addition of sulfate, the inert Rh nanoparticles exhibited superior NOR performance with a nitrate yield of 168.0 µmol gcat -1 h-1 . The 15 N isotope-labeling experiment confirmed the produced nitrate from nitrogen electrooxidation. A series of electrochemical in situ characterizations and theoretical calculation unveiled that sulfate promoted nitrogen adsorption and decreased the reaction energy barrier, and in situ formed sulfate radicals reduced the activation energy of the potential-determining step, thus accelerating NOR.

7.
J Am Chem Soc ; 143(44): 18519-18526, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34641670

RESUMO

The surface of an electrocatalyst undergoes dynamic chemical and structural transformations under electrochemical operating conditions. There is a dynamic exchange of metal cations between the electrocatalyst and electrolyte. Understanding how iron in the electrolyte gets incorporated in the nickel hydroxide electrocatalyst is critical for pinpointing the roles of Fe during water oxidation. Here, we report that iron incorporation and oxygen evolution reaction (OER) are highly coupled, especially at high working potentials. The iron incorporation rate is much higher at OER potentials than that at the OER dormant state (low potentials). At OER potentials, iron incorporation favors electrochemically more reactive edge sites, as visualized by synchrotron X-ray fluorescence microscopy. Using X-ray absorption spectroscopy and density functional theory calculations, we show that Fe incorporation can suppress the oxidation of Ni and enhance the Ni reducibility, leading to improved OER catalytic activity. Our findings provide a holistic approach to understanding and tailoring Fe incorporation dynamics across the electrocatalyst-electrolyte interface, thus controlling catalytic processes.

8.
Small ; 17(21): e2100203, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33856115

RESUMO

Engineering high-performance electrocatalysts is of great importance for energy conversion and storage. As an efficient strategy, element doping has long been adopted to improve catalytic activity, however, it has not been clarified how the valence state of dopant affects the catalytic mechanism and properties. Herein, it is reported that the valence state of a doping element plays a crucial role in improving catalytic performance. Specifically, in the case of iridium doped nickel-iron layer double hydroxide (NiFe-LDH), trivalent iridium ions (Ir3+ ) can boost hydrogen evolution reaction (HER) more efficiently than tetravalent iridium (Ir4+ ) ions. Ir3+ -doped NiFe-LDH delivers an ultralow overpotential (19 mV @ 10 mA cm-2 ) for HER, which is superior to Ir4+ doped NiFe-LDH (44 mV@10 mA cm-2 ) and even commercial Pt/C catalyst (40 mV@ 10 mA cm-2 ), and reaches the highest level ever reported for NiFe-LDH-based catalysts. Theoretical and experimental analyses reveal that Ir3+ ions donate more electrons to their neighboring O atoms than Ir4+ ions, which facilitates the water dissociation and hydrogen desorption, eventually boosting HER. The same valence-state effect is found for Ru and Pt dopants in NiFe-LDH, implying that chemical valence state should be considered as a common factor in modulating catalytic performance.

9.
Chemistry ; 26(13): 2793-2797, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31840329

RESUMO

Cost-effective, highly efficient and stable non-noble metal-based catalysts for the oxygen evolution reaction (OER) are very crucial for energy storage and conversion. Here, an amorphous cobalt nickel phosphate (CoNiPO4 ), containing a considerable amount of high-valence Ni3+ species as an efficient electrocatalyst for OER in alkaline solution, is reported. The catalyst was converted from Co-doped Ni2 P through pulsed laser ablation in liquid (PLAL) and exhibits a large specific surface area of 162.5 m2 g-1 and a low overpotential of 238 mV at 10 mA cm-2 with a Tafel slope of 46 mV dec-1 , which is much lower than those of commercial RuO2 and IrO2 . This work demonstrates that PLAL is a powerful technology for generating amorphous CoNiPO4 with high-valence Ni3+ , thus paving a new way towards highly effective OER catalysts.

10.
Angew Chem Int Ed Engl ; 59(43): 19297-19303, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32666609

RESUMO

Metallic catalysts with nanopores are advantageous on improving both activity and selectivity, while the reason behind that remains unclear all along. In this work, porous Zn nanoparticles (P-Zn) were adopted as a model catalyst to investigate the catalytic behavior of metallic nanopores. In situ X-ray absorption spectroscopy, in situ Fourier transform infrared spectroscopy, and density functional theory (DFT) analyses reveal that the concave surface of nanopores works like a pincer to capture and clamp CO2 and H2 O precursors simultaneously, thus lowering the energy barriers of CO2 electroreduction. Resultantly, the pincer mechanism endows P-Zn with a high Faradic efficiency (98.1 %) towards CO production at the potential of -0.95 V vs. RHE. Moreover, DFT calculation demonstrates that Co and Cu nanopores exhibit the pincer behavior as well, suggesting that this mechanism is universal for metallic nanopores.

11.
Angew Chem Int Ed Engl ; 59(28): 11510-11515, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32233052

RESUMO

Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel-cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O2- /Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2- and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 µmol h-1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.

12.
Cancer ; 125(17): 3068-3078, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067359

RESUMO

BACKGROUND: China accounts for approximately 27% of global cancer deaths. However, to the authors' knowledge, the lasting effects of cancer and cancer treatments on patients have not been investigated in China. The authors developed a questionnaire, the China Survey of Experiences with Cancer, for Chinese cancer survivors. This article introduces the study design and domains covered in the questionnaire. METHODS: The Cancer Survivorship Supplement of the Medical Expenditure Panel Survey (MEPS) was used as a reference to develop the questionnaire. The final in-person surveys were conducted in 2015 and 2016. Samples were chosen through multistage sampling. The authors described the characteristics of the study participants and their cancer experiences. RESULTS: At the time of last follow-up, a total of 1166 patients had completed at least 1 component of the survey. Approximately 59% of the cancer survivors were aged ≥60 years. Greater than one-half of the participants had an elementary education level or less (51%) and a yearly family income of <$3174. Chinese cancer survivors were more likely to retire earlier than planned compared with American cancer survivors (37% vs 9%). The majority of Chinese cancer survivors (84%) reported that their work abilities were hindered by their cancer or cancer treatments. Approximately one-half of patients in China had to incur debt because of cancer, whereas <10% of patients in the United States reported having incurred debt. CONCLUSIONS: The survey provides information regarding the burden of cancer in China that to the authors' knowledge currently is unavailable from other sources, including medical care use, financial impacts, employment patterns, and life experience after a cancer diagnosis for survivors and their families.


Assuntos
Sobreviventes de Câncer , Inquéritos Epidemiológicos/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Emprego , Feminino , Humanos , Renda , Seguro Saúde , Masculino , Pessoa de Meia-Idade , Projetos Piloto , População Rural , Inquéritos e Questionários
13.
Small ; 15(42): e1902582, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31448555

RESUMO

The electroreduction of carbon dioxide (CO2 ) toward high-value fuels can reduce the carbon footprint and store intermittent renewable energy. The iodide-ion-assisted synthesis of porous copper (P-Cu) microspheres with a moderate coordination number of 7.7, which is beneficial for the selective electroreduction of CO2 into multicarbon (C2+ ) chemicals is reported. P-Cu delivers a C2+ Faradaic efficiency of 78 ± 1% at a potential of -1.1 V versus a reversible hydrogen electrode, which is 32% higher than that of the compact Cu counterpart and approaches the record (79%) reported in the same cell configuration. In addition, P-Cu shows good stability without performance loss throughout a continuous operation of 10 h.

14.
Small ; 15(8): e1804832, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30714319

RESUMO

Low-cost and high-performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser-synthesized catalyst, porous Co0.75 Ni0.25 (OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm-2 ) and oxygen evolution reaction (235 mV@10 mA cm-2 ). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm-2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C-Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution.

15.
Small ; 14(17): e1800195, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29577621

RESUMO

Exploiting high-performance, robust, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is crucial for electrochemical energy storage and conversion technologies. Engineering the interfacial structure of hybrid catalysts often induces synergistically enhanced electrocatalytic performance. Herein, a new strongly coupled heterogeneous catalyst with proper interfacial structures, i.e., CoO nanoclusters decorated on CoFe layered double hydroxides (LDHs) nanosheets, is prepared via a simple one-step pulsed laser ablation in liquid method. Thorough spectroscopic characterizations reveal that strong chemical couplings at the hybrid interface trigger charge transfer from CoII in the oxide to FeIII in the LDHs through the interfacial FeOCo bond, leading to considerable amounts of high oxidation state CoIII sites present in the hybrid. Interestingly, the CoO/CoFe LDHs exhibit pronounced synergistic effects in electrocatalytic water oxidation, with substantially enhanced intrinsic catalytic activity and stability relative to both components. The hybrid catalyst achieves remarkably low OER overpotential and Tafel slope in alkaline medium, outperforming that of Ru/C and manifesting itself among the most active Co-based OER catalysts.

16.
Langmuir ; 34(45): 13544-13549, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30339409

RESUMO

Laser ablation in liquid was used to prepare homogeneous copper-zinc alloy catalysts that exhibited excellent selectivity for C2H4 in CO2 electroreduction, with faradaic efficiency values as high as 33.3% at a potential of -1.1 V (vs reversible hydrogen electrode). The high proximity of Cu and Zn atoms on the surface of the catalyst was found to facilitate both stabilization of the CO* intermediate and its transfer from Zn atoms to their Cu neighbors, where further dimerization and protonation occur to give rise to a large amount of ethylene product. The new homogeneous nanocatalyst, along with the mechanism proposed for its performance, may be very helpful for in-depth understanding of processes related to carbon dioxide electroreduction and conversion.

17.
Small ; 13(36)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28722307

RESUMO

Surficial defects in semiconductor can induce high density of carriers and cause localized surface plasmon resonance which is prone to light harvesting and energy conversion, while internal defects may cause serious recombination of electrons and holes. Thus, it is significant to precisely control the distribution of defects, although there are few successful examples. Herein, an effective strategy to confine abundant defects within the surface layer of Cu1.94 S nanoflake arrays (NFAs) is reported, leaving a perfect internal structure. The Cu1.94 S NFAs are then applied in photoelectrochemical (PEC) water splitting. As expected, the surficial defects give rise to strong LSPR effect and quick charge separation near the surface; meanwhile, they provide active sites for catalyzing hydrogen evolution. As a result, the NFAs achieve the top PEC properties ever reported for Cux S-based photocathodes.

18.
Small ; 13(16)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28195444

RESUMO

Manganese-based oxides have exhibited high promise as noncoinage alternatives to Pt/C for catalyzing oxygen reduction reaction (ORR) in basic solution and a mix of Mn3+/4+ valence is believed to be vital in achieving optimum ORR performance. Here, it is proposed that, distinct from the most studied perovskites and spinels, Mn-based mullites with equivalent molar ratio of Mn3+ and Mn4+ provide a unique platform to maximize the role of Mn valence in facile ORR kinetics by introducing modest content of oxygen deficiency, which is also beneficial to enhanced catalytic activity. Accordingly, amorphous mullite SmMn2 O5-δ nanoparticles with finely tuned concentration of oxygen vacancies are synthesized via a versatile top-down approach and the modest oxygen-defective sample with an Mn3+ /Mn4+ ratio of 1.78, i.e., Mn valence of 3.36 gives rise to a superior overall ORR activity among the highest reported for the family of Mn-based oxides, comparable to that of Pt/C. Altogether, this study opens up great opportunities for mullite-based catalysts to be a cost-effective alternative to Pt/C in diverse electrochemical energy storage and conversion systems.

19.
Langmuir ; 33(26): 6457-6463, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28614946

RESUMO

Owing to their high extinction coefficient and moderate band gap, cadmium chalcogenides are known as common semiconductors for photoelectric conversion. Nevertheless, no ideal cadmium chalcogenide with proper band structure is available yet for photoelectrochemical hydrogen evolution. In this work, we modified the band structure of CdTe via alloying with Se to achieve a ternary compound (CdSe0.8Te0.2) with n-type conduction, a narrower band gap, and a more negative band position compared to those of CdSe and CdTe. This novel material exhibits strong light absorption over a wider spectrum range and generates more vigorous electrons for hydrogen reduction. As a result, a photoelectrode based on nanoflake arrays of the new material could achieve a photocurrent density 2 times that of its CdSe counterpart, outperforming similar materials previously reported in the literature. Moreover, the quick transfer of holes achieved in the novel material was found to depress photocorrosion processes, which led to improved long-term working stability.

20.
Small ; 12(23): 3181-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27145726

RESUMO

TiO2 has excellent electrochemical properties but limited solar photocatalytic performance in light of its large bandgap. One important class of visible-wavelength sensitizers of TiO2 is based on ZnFe2 O4 , which has shown fully a doubling in performance relative to pure TiO2 . Prior efforts on this important front have relied on presynthesized nanoparticles of ZnFe2 O4 adsorbed on a TiO2 support; however, these have not yet achieved the full potential of this system since they do not provide a consistently maximized area of the charge-separating heterointerface per volume of sensitizing absorber. A novel atomic layer deposition (ALD)-enhanced synthesis of sensitizing ZnFe2 O4 leaves grown on the trunks of TiO2 trees is reported. These new materials exhibit fully a threefold enhancement in photoelectrochemical performance in water splitting compared to pristine TiO2 under visible illumination. The new materials synthesis strategy relies first on the selective growth of FeOOH nanosheets, 2D structures that shoot off from the sides of the TiO2 trees; these templates are then converted to ZnFe2 O4 with the aid of a novel ALD step, a strategy that preserves morphology while adding the Zn cation to achieve enhanced optical absorption and optimize the heterointerface band alignment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA