Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7964): 294-300, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940729

RESUMO

Chiral amines are commonly used in the pharmaceutical and agrochemical industries1. The strong demand for unnatural chiral amines has driven the development of catalytic asymmetric methods1,2. Although the N-alkylation of aliphatic amines with alkyl halides has been widely adopted for over 100 years, catalyst poisoning and unfettered reactivity have been preventing the development of a catalyst-controlled enantioselective version3-5. Here we report the use of chiral tridentate anionic ligands to enable the copper-catalysed chemoselective and enantioconvergent N-alkylation of aliphatic amines with α-carbonyl alkyl chlorides. This method can directly convert feedstock chemicals, including ammonia and pharmaceutically relevant amines, into unnatural chiral α-amino amides under mild and robust conditions. Excellent enantioselectivity and functional-group tolerance were observed. The power of the method is demonstrated in a number of complex settings, including late-stage functionalization and in the expedited synthesis of diverse amine drug molecules. The current method indicates that multidentate anionic ligands are a general solution for overcoming transition-metal-catalyst poisoning.


Assuntos
Alquilação , Aminas , Catálise , Cobre , Amidas/química , Aminas/química , Cobre/química , Ligantes , Preparações Farmacêuticas/química
2.
Trends Biochem Sci ; 49(3): 247-256, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38072749

RESUMO

In plants, two atypical DNA-dependent RNA polymerases, RNA polymerase IV (Pol IV) and Pol V, and an RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) together produce noncoding RNAs (ncRNAs) to guide the plant-specific RNA-directed DNA methylation (RdDM). Although both Pol IV and Pol V have evolved from the canonical Pol II, they have adapted to different roles in RdDM. The mechanisms of their adaptation are key to understanding plant DNA methylation and the divergent evolution of polymerases. In this review, we summarize insights that have emerged from recent structural studies of Pol IV, Pol V, and RDR2 and discuss their structural features critical for efficient ncRNA production in RdDM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metilação de DNA , DNA de Plantas/metabolismo , Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA não Traduzido/genética , Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , RNA Interferente Pequeno/metabolismo
3.
Plant Cell ; 34(6): 2140-2149, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35188193

RESUMO

In plants, the biogenesis of small interfering RNA (siRNA) requires a family of RNA-dependent RNA polymerases that convert single-stranded RNA (ssRNA) into double-stranded RNA (dsRNA), which is subsequently cleaved into defined lengths by Dicer endonucleases. Here, we determined the structure of maize (Zea mays) RNA-DEPENDENT RNA POLYMERASE 2 (ZmRDR2) in the closed and open conformations. The core catalytic region of ZmRDR2 possesses the canonical DNA-dependent RNA polymerase (DdRP) catalytic sites, pointing to a shared RNA production mechanism between DdRPs and plant RDR-family proteins. Apo-ZmRDR2 adopts a highly compact structure, representing an inactive closed conformation. By contrast, adding RNA induced a significant conformational change in the ZmRDR2 Head domain that opened the RNA binding tunnel, suggesting this is an active elongation conformation of ZmRDR2. Overall, our structural studies trapped both the active and inactive conformations of ZmRDR2, providing insights into the molecular mechanism of dsRNA synthesis during plant siRNA production.


Assuntos
RNA de Cadeia Dupla , RNA Polimerase Dependente de RNA , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , RNA de Cadeia Dupla/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/genética
4.
J Am Chem Soc ; 146(13): 9444-9454, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513075

RESUMO

The 3d transition metal-catalyzed enantioconvergent radical cross-coupling provides a powerful tool for chiral molecule synthesis. In the classic mechanism, the bond formation relies on the interaction between nucleophile-sequestered metal complexes and radicals, limiting the nucleophile scope to sterically uncongested ones. The coupling of sterically congested nucleophiles poses a significant challenge due to difficulties in transmetalation, restricting the reaction generality. Here, we describe a probable outer-sphere nucleophilic attack mechanism that circumvents the challenging transmetalation associated with sterically congested nucleophiles. This strategy enables a general copper-catalyzed enantioconvergent radical N-alkylation of aromatic amines with secondary/tertiary alkyl halides and exhibits catalyst-controlled stereoselectivity. It accommodates diverse aromatic amines, especially bulky secondary and primary ones to deliver value-added chiral amines (>110 examples). It is expected to inspire the coupling of more nucleophiles, particularly challenging sterically congested ones, and accelerate reaction generality.

5.
Mol Carcinog ; 63(5): 962-976, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411298

RESUMO

It is well known that 5-methylcytosine (m5C) is involved in variety of crucial biological processes in cancers. However, its biological roles in lung adenocarcinoma (LAUD) remain to be determined. The LUAD samples were used to assess the clinical value of NOP2/Sun RNA Methyltransferase 2 (NSUN2). Dot blot was used to determine global m5C levels. ChIP and dual-luciferase assays were performed to investigate the MYC-associated zinc finger protein (MAZ)-binding sites in NSUN2 promoter. RNA-seq was used to explore the downstream molecular mechanisms of NSUN2. Dual luciferase reporter assay, m5C-RIP-qPCR, and mRNA stability assay were conducted to explore the effect of NSUN2-depletion on target genes. Cell viability, transwell, and xenograft mouse model were designed to demonstrate the characteristic of NSUN2 in promoting LUAD progression. The m5C methyltransferase NSUN2 was highly expressed and caused elevated m5C methylation in LUAD samples. Mechanistically, MAZ positively regulated the transcription of NSUN2 and was related to poor survival of LUAD patients. Silencing NSUN2 decreased the global m5C levels, suppressed proliferation, migration and invasion, and inhibited activation of PI3K-AKT signaling in A549 and SPAC-1 cells. Phosphoinositide-3-Kinase Regulatory Subunit 2 (PIK3R2) was upregulated by NSUN2-mediated m5C methylation by enhancing its mRNA stabilization and activated the phosphorylation of the PI3K-AKT signaling. The present study explored the underlying mechanism and biological function of NSUN2-meditated m5C RNA methylation in LUAD. NSUN2 was discovered to facilitate the malignancy progression of LUAD through regulating m5C modifications to stabilize PIK3R2 activating the PI3K-AKT signaling, suggesting that NSUN2 could be a novel biomarker and promising therapeutic target for LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Metiltransferases , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Proliferação de Células/genética , Modelos Animais de Doenças , Luciferases , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Metilação de RNA/genética , 5-Metilcitosina/metabolismo
6.
J Am Chem Soc ; 145(27): 14686-14696, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37392183

RESUMO

The enantioconvergent C(sp3)-N cross-coupling of racemic alkyl halides with (hetero)aromatic amines represents an ideal means to afford enantioenriched N-alkyl (hetero)aromatic amines yet has remained unexplored due to the catalyst poisoning specifically for strong-coordinating heteroaromatic amines. Here, we demonstrate a copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions. The key to success is the judicious selection of appropriate multidentate anionic ligands through readily fine-tuning both electronic and steric properties for the formation of a stable and rigid chelating Cu complex. Thus, this kind of ligand could not only enhance the reducing capability of a copper catalyst to provide an enantioconvergent radical pathway but also avoid the coordination with other coordinating heteroatoms, thereby overcoming catalyst poisoning and/or chiral ligand displacement. This protocol covers a wide range of coupling partners (89 examples for activated racemic secondary/tertiary alkyl bromides/chlorides and (hetero)aromatic amines) with high functional group compatibility. When allied with follow-up transformations, it provides a highly flexible platform to access synthetically useful enantioenriched amine building blocks.

7.
Plant Cell ; 32(7): 2178-2195, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32358072

RESUMO

Chromatin remodeling and histone modifications are important for development and floral transition in plants. However, it is largely unknown whether and how these two epigenetic regulators coordinately regulate the important biological processes. Here, we identified three types of Imitation Switch (ISWI) chromatin-remodeling complexes in Arabidopsis (Arabidopsis thaliana). We found that AT-RICH INTERACTING DOMAIN5 (ARID5), a subunit of a plant-specific ISWI complex, can regulate development and floral transition. The ARID-PHD dual domain cassette of ARID5 recognizes both the H3K4me3 histone mark and AT-rich DNA. We determined the ternary complex structure of the ARID5 ARID-PHD cassette with an H3K4me3 peptide and an AT-containing DNA. The H3K4me3 peptide is combinatorially recognized by the PHD and ARID domains, while the DNA is specifically recognized by the ARID domain. Both PHD and ARID domains are necessary for the association of ARID5 with chromatin. The results suggest that the dual recognition of AT-rich DNA and H3K4me3 by the ARID5 ARID-PHD cassette may facilitate the association of the ISWI complex with specific chromatin regions to regulate development and floral transition.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/genética , Flores/fisiologia , Histonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Cristalografia por Raios X , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos
8.
Inorg Chem ; 62(13): 5134-5144, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36960495

RESUMO

Despite great achievements having been made in lithium-sulfur batteries (LSBs), further improvements regarding rate performance, cycle life, and operating temperature are needed for realistic applications. Herein, we developed a simple electrospun method for the preparation of TiO2 coaxial nanofiber (TCNFs)-modified Celgard separators to suppress the polysulfide shuttling. LSBs with a TCNF/Celgard separator display excellent electrochemical performance. For an areal sulfur loading of 2.5 mg cm-2, the cells exhibited a capacity of 1279 mA h g-1 at 0.5 A g-1, remained 798 mA h g-1 at 2.5 A g-1, and low-capacity decay of 0.057% per cycle within 1000 cycles. At 50 and -10 °C, the capacity of the cells is maintained at 932 and 931 mA h g-1 after 80 cycles at 0.5 A g-1, respectively. Detailed structural analysis and theoretical calculations revealed that the hollow-structured TCNFs offer high density of accessible electropositive Ti sites and oxygen vacancies and thus enables efficient trapping of polysulfides and facilitates Li+ transfer, leading to excellent performance. The simplicity of this strategy and the diversity of hollow-structured metal oxides holds great promise to design separators for high-performance LSBs.

9.
Virus Genes ; 59(6): 801-816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37644346

RESUMO

Chronic hepatitis B virus (HBV) infection remains a significant public health concern worldwide. Several metabolic processes regulate HBV DNA replication, including autophagy and lipid metabolism. In this study, we clarified the effect of lipids on HBV replication and elucidated possible mechanisms. We discovered that lipid metabolic gene expression levels were negatively correlated with the HBV DNA in plasma. Our data showed that fatty acid stimulation significantly reduced HBV DNA, hepatitis B surface antigen (HBsAg), and hepatitis B e antigen (HBeAg) levels in HepG2.2.15 cells, which are human hepatoma cell cultures transfected with HBV DNA. The Stearoyl coenzyme A desaturase 1 (SCD1)-autophagy pathway has also been implicated in inhibiting HBV replication by fatty acids stimulation. SCD1 knockdown deregulates the inhibitory effect of fatty acids on HBV by enhancing autophagy. When 3 methyladenine (3MA) was added, the inhibitory effects of specific autophagy inhibitors eliminated the positive effects of SCD1 knockdown on HBV replication. Our results indicate that SCD1 participates in the regulation of inhibition of HBV replication by fatty acids stimulation through regulating autophagy.


Assuntos
Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B , DNA Viral/genética , DNA Viral/metabolismo , Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , Células Hep G2 , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Autofagia/genética , Replicação Viral , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
10.
Cell Mol Biol (Noisy-le-grand) ; 69(15): 235-248, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38279431

RESUMO

In this study, the significance of oxidized low-density lipoprotein (ox-LDL) in promoting the progression of atherosclerosis was investigated by inducing the differentiation of macrophages into the M2 subtype within a high-fat diet-induced ApoE -/- mouse model. The study also evaluated the effects of ß2-AR agonists and blockers on this process. Ox-LDL was found to have significantly promoted the differentiation of macrophages into the M2 type and induced related functional alterations. Furthermore, it activated the pyroptosis pathway and encouraged the release of lactate dehydrogenase. The administration of ß2-AR agonists intensified these processes, while ß2-AR blockers had the opposite effect. In animal experiments, the model group displayed elevated numbers of M2-type macrophages beneath the aortic root intima, an increased rate of plaque destruction, and the formation of atherosclerotic plaques compared to the control group. The SAL (Salbutamol) group exhibited even more severe plaque development than the model group. Conversely, the ICI (ICI118551) group demonstrated M2-type macrophage levels comparable to the control group, with a higher plaque destruction rate than controls but significantly lower than the model group, and no atherosclerotic plaques. These findings suggest that ox-LDL promoted the differentiation of recruited monocytes into M2-type macrophages, leading to a shift in the inflammatory response from M1 to M2 macrophages. This alteration resulted in the persistence of atherosclerotic inflammation, as M2-type macrophages were prone to cell membrane rupture (such as pyroptosis), contributing to the continuous recruitment of circulating monocytes and heightened inflammatory reactions within atherosclerotic plaques. Consequently, this process fueled the progression of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Knockout para ApoE , Aterosclerose/metabolismo , Macrófagos , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
J Integr Plant Biol ; 65(1): 203-222, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36541721

RESUMO

Minichromosome Maintenance protein 10 (MCM10) is essential for DNA replication initiation and DNA elongation in yeasts and animals. Although the functions of MCM10 in DNA replication and repair have been well documented, the detailed mechanisms for MCM10 in these processes are not well known. Here, we identified AtMCM10 gene through a forward genetic screening for releasing a silenced marker gene. Although plant MCM10 possesses a similar crystal structure as animal MCM10, AtMCM10 is not essential for plant growth or development in Arabidopsis. AtMCM10 can directly bind to histone H3-H4 and promotes nucleosome assembly in vitro. The nucleosome density is decreased in Atmcm10, and most of the nucleosome density decreased regions in Atmcm10 are also regulated by newly synthesized histone chaperone Chromatin Assembly Factor-1 (CAF-1). Loss of both AtMCM10 and CAF-1 is embryo lethal, indicating that AtMCM10 and CAF-1 are indispensable for replication-coupled nucleosome assembly. AtMCM10 interacts with both new and parental histones. Atmcm10 mutants have lower H3.1 abundance and reduced H3K27me1/3 levels with releasing some silenced transposons. We propose that AtMCM10 deposits new and parental histones during nucleosome assembly, maintaining proper epigenetic modifications and genome stability during DNA replication.


Assuntos
Arabidopsis , Histonas , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Replicação do DNA/genética , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5172-5180, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-38114107

RESUMO

Excessive application of chemical fertilizer has caused many problems in Angelica dahurica var. formosana planting, such as yield decline and quality degradation. In order to promote the green cultivation mode of A. dahurica var. formosana and explore rhizosphere fungus resources, the rhizosphere fungi with nitrogen fixation, phosphorus solubilization, potassium solubilization, iron-producing carrier, and IAA-producing properties were isolated and screened in the rhizosphere of A. dahurica var. formosana from the genuine and non-genuine areas, respectively. The strains were identified comprehensively in light of the morphological characteristics and ITS rDNA sequences, and the growth-promoting effect of the screened strains was verified by pot experiment. The results showed that 37 strains of growth-promoting fungi were isolated and screened from the rhizosphere of A. dahurica var. formosana, mostly belonging to Fusarium. The cultured rhizosphere growth-promoting fungi of A. dahurica var. formosana were more abundant and diverse in the genuine producing areas than in the non-genuine producing areas. Among all strains, Aspergillus niger ZJ-17 had the strongest growth promotion potential. Under the condition of no fertilization outdoors, ZJ-17 inoculation significantly promoted the growth, yield, and accumulation of effective components of A. dahurica var. formosana planted in the soil of genuine and non-genuine producing areas, with yield increases of 73.59% and 37.84%, respectively. To a certain extent, it alleviated the restriction without additional fertilization on the growth of A. dahurica var. formosana. Therefore, A. niger ZJ-17 has great application prospects in increasing yield and quality of A. dahurica var. formosana and reducing fertilizer application and can be actually applied in promoting the growth of A. dahurica var. formosana and producing biofertilizer.


Assuntos
Angelica , Fertilizantes , Rizosfera , Angelica/química , Fungos/genética , Fósforo
13.
Chem Rec ; 22(10): e202200142, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35833508

RESUMO

Lithium sulfur batteries (LSBs) have attracted tremendous attention owing to their high theoretical specific capacity and specific energy. However, their practical applications are hindered by poor cyclic life, mainly caused by polysulfide shuttling. The development of advanced materials to mitigate the polysulfide shuttling effect is urgently demanded. Metal-organic frameworks (MOFs) have been exploited as multifunctional materials for the decoration of separators owing to their high surface area, structural diversity, tunable pore size, and easy tailor ability. In this review, we aim to present the state-of-the-art MOF-based separators for LSBs. Particular attention is paid to the rational design (pore aperture, metal node, functionality, and dimension) of MOFs with enhanced ability for anchoring polysulfides and facilitating Li+ transportation. Finally, the challenges and perspectives are provided regarding to the future design MOF-based separators for high-performance LSBs.

14.
Environ Res ; 211: 113045, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35248560

RESUMO

The extensive use of antibiotics leads to the occurrences of antibiotic resistance genes (ARGs) in aquatic environment. As an emerging environmental pollutant, its pollution in aquatic environment has aroused widespread concern. However, the residues of antibiotics and antibiotic resistance genes in drinking water distribution system were barely reported up to now. Here, we studied the correlation and coordination between chlorine resistance mechanism and antibiotic resistance mechanism of chlorine-resistant bacteria. Antibiotics induce the resistance of chlorine-resistant bacteria (CRB) to NaClO, so that low-dose disinfectants can not inactivate CRB. We put forward a strategy to control the growth of CRB by controlling the concentration of biodegradable dissolved organic carbon (BDOC) in the front section of the water network. Moreover, We screened two strains of chlorine-resistant bacteria with different antibiotic resistance after mixed culture, the results showed that antibiotic resistance could spread horizontally among different kinds of bacteria. Then, the non-pathogenic bacteria can be used as a carrier, causing the pathogen to become resistant to antibiotic, and ultimately pose harm to human health. Generally, the antibiotic, antibiotic resistant genes, and the chlorine disinfectants added in water treatment plants will interact with bacteria in the water supply pipe network, which causes pollution to drinking water.


Assuntos
Desinfetantes , Água Potável , Purificação da Água , Antibacterianos/farmacologia , Bactérias/genética , Cloro/análise , Cloro/farmacologia , Desinfetantes/farmacologia , Desinfecção , Resistência Microbiana a Medicamentos/genética , Humanos
15.
Environ Res ; 213: 113601, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660564

RESUMO

In this study, lignite activated coke (LAC) was used as the carrier for the first time, Fe3O4-CuO composite metal oxide was used as the main active material, and the nano-scale magnetic supported composite metal oxide Fe3O4-CuO@LAC catalyst was synthesized for the first time, which can effectively activate the active oxygen in peroxodisulfate (PS). XRD, FTIR, BET, SEM, XPS and other analysis results showed that there was particulate matter with spherical structure on the surface of the active coke, and its diffraction peaks matched well with the characteristic peaks of Fe3O4 and CuO, and it was a mesoporous structure with a specific surface area of 619.090 m2 g-1. By optimizing the experimental conditions, the results showed that more than 92% of hydroquinone can be removed under the conditions of hydroquinone concentration of 50 mg/L, pH = 5, adding 0.1 g/L catalyst and 3 mmol/L PS. EPR and quenching experiments proved that there were four reactive oxygen species in the reaction system ·OH, SO4-·, O2-· and 1O2. According to the degradation products of hydroquinone detected by LC-MS, the possible degradation path was deduced which laid a foundation for solving the problem of difficult treatment of phenol-containing wastewater in coal chemical industry.


Assuntos
Coque , Poluentes Químicos da Água , Indústria Química , Carvão Mineral/análise , Coque/análise , Cobre , Hidroquinonas/análise , Óxidos/análise , Fenóis/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise
16.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613470

RESUMO

GATA transcription factor genes participate in plant growth, development, morphogenesis, and stress response. In this study, we carried out a comprehensive genome-wide analysis of wheat GATA transcription factor genes to reveal their molecular evolutionary characteristics and involvement in salt and drought tolerance. In total, 79 TaGATA genes containing a conserved GATA domain were identified in the wheat genome, which were classified into four subfamilies. Collinear analysis indicated that fragment duplication plays an important role in the amplification of the wheat GATA gene family. Functional disproportionation analysis between subfamilies found that both type I and type II functional divergence simultaneously occurs in wheat GATA genes, which might result in functional differentiation of the TaGATA gene family. Transcriptional expression analysis showed that TaGATA genes generally have a high expression level in leaves and in response to drought and salt stresses. Overexpression of TaGATA62 and TaGATA73 genes significantly enhanced the drought and salt tolerance of yeast and Arabidopsis. Protein-protein docking indicated that TaGATAs can enhance drought and salt tolerance by interacting between the DNA-binding motif of GATA transcription factors and photomorphogenesis-related protein TaCOP9-5A. Our results provided a base for further understanding the molecular evolution and functional characterization of the plant GATA gene family in response to abiotic stresses.


Assuntos
Resistência à Seca , Fatores de Transcrição GATA , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Triticum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Secas , Evolução Molecular , Regulação da Expressão Gênica de Plantas
17.
Int J Mol Sci ; 23(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35457236

RESUMO

The Multidrug and toxin efflux (MATE) gene family plays crucial roles in plant growth and development and response to adverse stresses. This work investigated the structural and evolutionary characteristics, expression profiling and potential functions involved in aluminium (Al) tolerance from a genome-wide level. In total, 211 wheat MATE genes were identified, which were classified into four subfamilies and unevenly distributed on chromosomes. Duplication analysis showed that fragments and tandem repeats played the main roles in the amplification of TaMATEs, and Type II functional disproportionation had a leading role in the differentiation of TaMATEs. TaMATEs had abundant Al resistance and environmental stress-related elements, and generally had a high expression level in roots and leaves and in response to Al stress. The 3D structure prediction by AlphaFold and molecular docking showed that six TaMATE proteins localised in the plasmalemma could combine with citrate via amino acids in the citrate exuding motif and other sites, and then transport citrate to soil to form citrate aluminium. Meanwhile, citrate aluminium formed in root cells might be transported to leaves by TaMATEs to deposit in vacuoles, thereby alleviating Al toxicity.


Assuntos
Alumínio , Triticum , Alumínio/metabolismo , Alumínio/toxicidade , Ácido Cítrico/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Simulação de Acoplamento Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Triticum/genética , Triticum/metabolismo
18.
J Integr Plant Biol ; 64(12): 2385-2395, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149781

RESUMO

DNA methylation, a conserved epigenetic mark, is critical for tuning temporal and spatial gene expression. The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1) initiates active DNA demethylation and is required to prevent DNA hypermethylation at thousands of genomic loci. However, how ROS1 is recruited to specific loci is not well understood. Here, we report the discovery of Arabidopsis AGENET Domain Containing Protein 3 (AGDP3) as a cellular factor that is required to prevent gene silencing and DNA hypermethylation. AGDP3 binds to H3K9me2 marks in its target DNA via its AGD12 cassette. Analysis of the crystal structure of the AGD12 cassette of AGDP3 in complex with an H3K9me2 peptide revealed that dimethylated H3K9 and unmodified H3K4 are specifically anchored into two different surface pockets. A histidine residue located in the methyllysine binding aromatic cage provides AGDP3 with pH-dependent H3K9me2 binding capacity. Our results uncover a molecular mechanism for the regulation of DNA demethylation by the gene silencing mark H3K9me2.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Proteínas de Transporte/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas de Arabidopsis/metabolismo , Inativação Gênica , DNA/metabolismo
19.
Physiol Mol Biol Plants ; 28(7): 1347-1357, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36051232

RESUMO

Bitter gourd (Momordica charantia L.) is a member of Cucurbitaceae family and has long been used as a source of food and medicine for its rich bioactive components or secondary metabolites. However, there are relatively few large-scale detection, identification, and quantitative studies on flavonoids in the pericarp of bitter gourds of different colours. To determine the differences in the diversity and specificity of flavonoids in the pericarp of bitter gourd of different colours, the metabolic profiles in the pericarp of three coloured bitter gourd accessions, dark green (mo), pale green (lv), and white (bai), were analysed by ultra-performance liquid chromatography-tandem mass spectrometry. Priorly, it was confirmed that the different shades of green were caused by the content of chlorophyll. A total of 93 metabolites, including 90 flavonoids and three tannins, were detected in the current study. These 90 flavonoids included three isoflavones, nine dihydroflavones, seven flavanols, 34 flavonols, 26 flavonoids, four chalcones, five flavonoid carbonosides, and two dihydroflavonols. Compared to mo, both lv and bai had 21 and 25 different metabolites, respectively, while there were only nine different metabolites between lv and bai. The relative contents of vitexin and isovitexin increased with the deeper colour of the bitter gourd. Thus, the different metabolites in coloured bitter gourds are mainly involved in the biosynthesis of flavonols, flavonoid carbonosides, and flavonoids. This study enables identification of metabolic differences in the pericarp of bitter gourds of different colours. The results will be helpful for quality breeding of new bitter gourd varieties and shall provide a reference for their medical application. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01210-7.

20.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1831-1846, 2022 Apr.
Artigo em Zh | MEDLINE | ID: mdl-35534253

RESUMO

In recent years, the MYB-related gene family has been found pivotal in plant growth and development. MYB-related gene family in Angelica dahurica var. formosana was systematically investigated based on "Chuanzhi No. 2" through transcriptome database search and bioinformatics and the temporal and spatial expression patterns were analyzed through real-time fluorescence-based quantitative polymerase chain reaction(PCR). The results showed that 122 MYB-related proteins family were identified, mainly including the unstable hydrophilic proteins with good thermal stability. Most of the proteins were located in nuclei. The majority of the proteins had the structures of random coil and α-helix. Five MYB-related proteins family of A. dahurica var. formosana had membrane-binding domains. The conserved domain analysis of MYB-related proteins family of A. dahurica var. formosana showed that the MYB domains of genes in five subgroups, similar to 2 R-, 3 R-, and 4 R-MYB proteins, contained three evenly distributed Trp(W) residues in the MYB repeat sequence. The phylogenetic analysis of MYB-related proteins family in A. dahurica var. formosana and Arabidopsis thaliana showed that the MYB-related members were unevenly distributed in five subgroups, and A. thaliana and A. dahurica var. formosana had almost the same number of genes in the CCA1-like subgroup. There were differences in the number, type, and distribution of motifs contained in 122 encoded proteins. Transcription factors with similar branches had similar domains and motifs. The expression pattern analysis showed that the transcription factors AdMYB53, AdMYB83, and AdMYB89 responded to hormones to varying degrees, and they were highly expressed in leaves and responded quickly in roots. This study lays a foundation for further investigating the function of MYB-related transcription factors of A. dahurica var. formosana and solving the corresponding biological problems such as bolting early.


Assuntos
Angelica , Gastrópodes , Angelica/química , Animais , Biologia Computacional , Filogenia , Folhas de Planta , Proteínas de Plantas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA