RESUMO
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
RESUMO
Recently, high-entropy (HE) materials have attracted increasing interest in various fields due to their unique characteristics. Rare earth (RE) elements have a similar atomic radius and gradually occupied 4f orbitals, endowing them with abundant optical, electric, and magnetic properties. Furthermore, HE-RE materials exhibit good structural and thermal stability and various functional properties, emerging as an important class of HE materials, which are on the verge of rapid development. However, a comprehensive review focusing on the introduction and in-depth understanding of HE-RE materials has not been reported to date. Thus, this review endeavors to provide a comprehensive summary of the development and research status of HE-RE materials, including alloys and ceramics, ranging from their structure, synthesis, and properties to applications. In addition, some distinctive issues of HR-RE materials related to the special electronic structure of RE are also discussed. Finally, we put forward the current challenges and future development directions of HE-RE materials. We hope that this review will provide inspiration for new design ideas and valuable references in this emerging field in the future.
RESUMO
The development of efficient and stable catalysts for hydrogen production from electrolytic water in a wide pH range is of great significance in alleviating the energy crisis. Herein, Pt nanoparticles (NPs) anchored on the vacancy of high entropy rare earth oxides (HEREOs) were prepared for the first time for highly efficient hydrogen production by water electrolysis. The prepared Pt-(LaCeSmYErGdYb)O showed excellent electrochemical performances, which require only 12, 57, and 77 mV to achieve a current density of 100 mA cm-2 in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS environments, respectively. In addition, Pt-(LaCeSmYErGdYb)O has successfully worked at 400 mA cm-2 @ 60 °C for 100 h in 0.5 M H2SO4, presenting the high mass activity of 37.7 A mg-1Pt and turnover frequency (TOF) value of 38.2 s-1 @ 12 mV, which is far superior to the recently reported hydrogen evolution reaction (HER) catalysts. Density functional theory (DFT) calculations have revealed that the interactions between Pt and HEREO have optimized the electronic structures for electron transfer and the binding strength of intermediates. This further leads to optimized proton binding and water dissociation, supporting the highly efficient and robust HER performances in different environments. This work provides a new idea for the design of efficient RE-based electrocatalysts.
RESUMO
Design of highly efficient electrocatalysts for alkaline hydrogen evolution reaction (HER) is of paramount importance for water electrolysis, but still a considerable challenge because of the slow HER kinetics in alkaline environments. Alloying is recognized as an effective strategy to enhance the catalytic properties. Lanthanides (Ln) are recognized as an electronic and structural regulator, attributed to their unique 4f electron behavior and the phenomenon known as lanthanide contraction. Here, a new class of Rh3Ln intermetallics (IMs) are synthesized using the sodium vapor reduction method. The alloying process induced an upshift of the d-band center and electron transfer from Ln to Rh, resulting in optimized adsorption and dissociation energies for H2O molecules. Consequently, Rh3Tb IMs exhibited outstanding HER activity in both alkaline environments and seawater, displaying an overpotential of only 19 mV at 10 mA cm-2 and a Tafel slope of 22.2 mV dec-1. Remarkably, the current density of Rh3Tb IMs at 100 mV overpotential is 8.6 and 5.7 times higher than that of Rh/C and commercial Pt/C, respectively. This work introduces a novel approach to the rational design of HER electrocatalysis and sheds light on the role of lanthanides in electrocatalyst systems.
RESUMO
Developing high-performance electrocatalysts for alkaline hydrogen evolution reaction (HER) is crucial for producing green hydrogen, yet it remains challenging due to the sluggish kinetics in alkaline environments. Pt is located near the peak of HER volcano plot, owing to its exceptional performance in hydrogen adsorption and desorption, and Rh plays an important role in H2O dissociation. Lanthanides (Ln) are commonly used to modulate the electronic structure of materials and further influence the adsorption/desorption of reactants, intermediates, and products, and noble metal-Ln alloys are recognized as effective platforms where Ln elements regulate the catalytic properties of noble metals. Here Pt1.5Rh1.5Tm alloy is synthesized using the sodium vapor reduction method. This alloy demonstrates superior catalytic activity, being 4.4 and 6.6 times more effective than Pt/C and Rh/C, respectively. Density Functional Theory (DFT) calculations reveal that the upshift of d-band center and the charge transfer induced by alloying promote adsorption and dissociation of H2O, making Pt1.5Rh1.5Tm alloy more favorable for the alkaline HER reaction, both kinetically and thermodynamically.
RESUMO
Cesium lead halide (CsPbX3, X = Br, Cl, and I) nanocrystals (NCs) are widely concerned and applied in many fields due to the excellent photoelectric performance. However, the toxicity of Pb and the loss of luminescence in water limit its application in vivo. A stable perovskite nanomaterial with good bioimaging properties is developed by incorporating europium (Eu) in CsPbX3 NCs followed with the surface coating of silica (SiO2) shell (CsPbX3:Eu@SiO2). Through the surface coating of SiO2, the luminescence stability of CsPbBr3 in water is improved and the leakage of Pb2+ is significantly reduced. In particular, Eu doping inhibits the photoluminescence quantum yield reduction of CsPbBr3 caused by SiO2 coating, and further reduces the release of Pb2+. CsPbBr3:Eu@SiO2 nanoparticles (NPs) show efficient luminescence in water and good biocompatibility to achieve cell imaging. More importantly, CsPb(ClBr)3:Eu@SiO2 NPs are obtained by adjusting the halogen components, and green light and blue light are realized in zebrafish imaging, showing good imaging effect and biosafety. The work provides a strategy for advanced perovskite nanomaterials toward biological practical application.
Assuntos
Césio , Európio , Chumbo , Luminescência , Nanopartículas , Dióxido de Silício , Água , Peixe-Zebra , Animais , Dióxido de Silício/química , Európio/química , Nanopartículas/química , Chumbo/química , Césio/química , Água/química , Titânio/química , Óxidos , Compostos de CálcioRESUMO
Three Gram-stain-negative, aerobic, non-motile, chemoheterotrophic, short-rod-shaped bacteria, designated CDY1-MB1T, CDY2-MB3, and BDY3-MB2, were isolated from three marine sediment samples collected in the eastern Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains were related to the genus Aequorivita and close to the type strain of Aequorivita vitellina F4716T (with similarities of 98.0-98.1%). Strain CDY1-MB1T can grow at 15-37 °C (optimum 30 °C) and in media with pH 6-9 (optimum, pH 7), and tolerate up to 10% (w/v) NaCl. The predominant cellular fatty acids of strain CDY1-MB1T were iso-C15â:â0 (20.7%) and iso-C17â:â0 3-OH (12.8%); the sole respiratory quinone was menaquinone 6; the major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and two unidentified polar lipids. The digital DNA-DNA hybridization/average nucleotide identity values between strains CDY1-MB1T, CDY2-MB3, and BDY3-MB2 and A. vitellina F4716T were 24.7%/81.6-81.7%, thereby indicating that strain CDY1-MB1T should represent a novel species of the genus Aequorivita. The genomic DNA G+C contents were 37.6 % in all three strains. Genomic analysis showed the presence of genes related to nitrogen and sulphur cycling, as well as metal reduction. The genetic traits of these strains indicate their possible roles in nutrient cycling and detoxification processes, potentially shaping the deep-sea ecosystem's health and resilience. Based upon the consensus of phenotypic and genotypic analyses, strain CDY1-MB1T should be classified as a novel species of the genus Aequorivita, for which the name Aequorivita flava sp. nov. is proposed. The type strain is CDY1-MB1T (=MCCC 1A16935T=KCTC 102223T).
Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Água do Mar , Análise de Sequência de DNA , Vitamina K 2 , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Oceano Pacífico , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , DNA Bacteriano/genética , Água do Mar/microbiologia , Fosfolipídeos/análise , Fosfatidiletanolaminas , Flavobacteriaceae/isolamento & purificação , Flavobacteriaceae/genética , Flavobacteriaceae/classificaçãoRESUMO
Two Gram-stain-negative bacterial strains, 15-R06ZXC-3T and R06B22T, were isolated from the surface sediment of the Arctic Ocean. Phylogenetic analyses based on the 16S rRNA gene and genome sequences indicated that strain 15-R06ZXC-3T belongs to the genus Thioclava, while strain R06B22T belongs to the genus Zhongshania. Strain 15-R06ZXC-3T showed the closest relationship to Thioclava indica DT23-4T. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain 15-R06ZXC-3T and all of the type strains of the genus Thioclava ranged from 20.8 to 30.4% and 79.1 to 85.7%, respectively. Strain R06B22T was most closely related to Zhongshania marina DSW25-10T. The dDDH and ANI values between strain R06B22T and all of the type strains of the genus Zhongshania ranged from 18.6 to 20.4% and 77.5 to 79.4%, respectively. These dDDH and ANI values were all below the standard cutoff criteria for the delineation of bacterial species, indicating that the two strains may represent novel species within their respective genera. Furthermore, their phenotypic and chemotaxonomic characteristics also differentiated them from closely related species. Based on the polyphasic analyses, strains 15-R06ZXC-3T and R06B22T separately represent novel species of the genera Thioclava and Zhongshania, for which the names Thioclava arctica sp. nov. (type strain 15-R06ZXC-3T = MCCC 1A07434T= KCTC 8342T) and Zhongshania arctica sp. nov. (type strain R06B22T = MCCC 1A08273T= KCTC 8343T) are proposed. Additionally, phylogenomic analyses showed that the strain Marortus luteolus ZX-21T was clustered with the strain Z. marina DSW25-10T and all other type strains of the genus Zhongshania. Furthermore, the ANI and dDDH values between strains ZX-21T and DSW25-10T were 97.6% and 78.8±2.5%, respectively, strongly indicating that they represented a single species. Therefore, it is proposed that M. luteolus Yu et al. 2019 be recognized as a later heterotypic synonym of Z. marina On et al. 2019.
Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Sedimentos Geológicos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Sedimentos Geológicos/microbiologia , Regiões Árticas , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Água do Mar/microbiologia , Ácidos Graxos/química , Ácidos Graxos/análise , Oceanos e MaresRESUMO
Color-tunable room temperature phosphorescence (RTP) materials possess potential applications in multicolor imaging, multichannel anticounterfeiting, and information encryption. Herein, we synthesized two zero-dimensional cadmium-organic halides, (H-aepy)2CdX4 (referred to as CdX-aepy; X = Cl-, Br-; aepy = 3-(2-aminoethyl)pyridine), both of which exhibit long-lived excitation wavelength- and time-dependent RTP. Experimental and theoretical results suggest that the multicolor RTP can be ascribed to the coemission of pristine H-aepy ligands and halogen-affected H-aepys, supporting that suitably introducing halogens can be an efficient strategy for constructing multicolor RTP materials. Additionally, we also demonstrate that the two phosphors can be applied in multichannel anticounterfeiting and information encryption. This work reports two hybrids with color-tunable RTP, as well as provides new insight into the effect of halogens on the regulation of RTP.
RESUMO
Chuanxiong Rhizoma is a well-known Sichuan-specific herbal medicine. Its original plant, Ligusticum chuanxiong, has been cultivated asexually for a long time. L. chuanxiong has sexual reproductive disorders, which restricts its germplasm innovation. However, there is little research on the reproductive system of L. chuanxiong. This study is based on a comparative anatomical research approach, using morphological dissection, paraffin sectioning, staining and compression, and combined with scanning electron microscopy technology, to observe and compare the flowers, fruits, and seeds at various stages of reproductive growth of L. chuanxiong and its wild relative L. sinense. The results showed that the meiosis of pollen mother cells is abnormal in L. chuanxiong anthers, and the size and number of microspores are uneven and inconsistent in the tetrad stage. tapetum cells are not completely degenerated during anther development. During the pollen ripening stage, there are fine cracks in the anther wall, while most anthers could not release pollen normally. The surface of mature pollen grains is concave and partially deformed, and the pollens are all inactive and cannot germinate in vitro. The starch, polysaccharides, and lipids in the pollen were insufficient. The filaments of L. chuanxiong are short at the flowering stage and recurved downward. Double-hanging fruits were observed in the fruiting stage, being wrinkled; with shriveled seeds. Compared with L. sinense at the same stage, the anthers of L. sinense developed normally, and the pollen grains are vigorous and can germinate in vitro. The double-hanging fruits of L. sinense are full and normal; at the flowering period, the filaments are long and erect, significantly higher than the stigma. Mature blastocysts are visible in the ovary of both L. chuanxiong and L. sinense, and there is no significant difference in stigmas. The conclusion is that during the development of L. chuanxiong stamens, the meiosis of pollen mother cells is abnormal, and tetrad, tapetum, filament and other pollen structures develop abnormally. L. chuanxiong has the characteristic of male infertility, which is an important reason for its sexual reproductive disorders.
Assuntos
Ligusticum , Reprodução , Pólen , Flores , PolissacarídeosRESUMO
Rare earth (RE) elements are attractive for spin-magnetic modulation due to their unique 4 f electron configuration and strong orbital couplings. Alloying RE with conventional 3d transition-metal (TM) is promising for the fabrication of advanced spin catalysts yet remains much difficulties in preparation, which leads to the mysteries of spin-magnetic effect between RE and 3d TM on catalysis. Here we define a solid-phase synthetic protocol for creating RE-3d TM-noble metal integrated intraparticle heterostructured nanoalloys (IHAs) with distinct Gd and Co interface within the entire Rh framework, denoted as RhCo-RhGd IHAs. They exhibit interface-triggered antiferromagnetic interaction, which can induce electron redistribution and regulate spin polarization. Theoretical calculations further reveal that active sites around the heterointerface with weakened spin polarization optimize the adsorption and dissociation of H2O, thus promoting alkaline hydrogen evolution catalysis. The RhCo-RhGd IHAs show a small overpotential of 11.3â mV at 10â mA cm-2, as well as remarkable long-term stability, far superior to previously reported Rh-based catalysts.
RESUMO
As an important lanthanide (Ln)-based functional materials, the Ln chalcogenides possess unique properties and various applications. However, the controllable synthesis of Ln chalcogenide nanocrystals still faces great challenges because of the rather poor affinity between Ln and chalcogenide ions (S, Se, Te) as well as strong preference of combination with existed oxygen. Herein, a facile but general heterogeneous nucleation synthetic strategy is established toward a series of colloidal ternary Cu Ln sulfides nanocrystals using the Ln dithiocarbamates and CuI as precursors. To extend this synthetic protocol, similar strategy is used to prepare six kinds of high quality CuLnS2 nanocrystals, while the bulk ones are only obtained by the traditional solid-state reaction at rigorous condition. Importantly, high-entropy nanocrystals CuLnS2 and CuEux Ln2-x S3 which contain six Ln elements (Nd, Sm, Gd, Tb, Dy) are readily obtained by the co-decomposed process attributed to their similar diffusion speed. As a proof-of-concept application, CuEu2 S3 nanocrystals showed efficient photocatalytic hydrogen production properties.
RESUMO
To address the environmental crisis caused by excessive emissions of CO2 , the development of effective photocatalysts for the conversion of CO2 into chemicals has emerged as one of the most promising strategies. Herein, beyond those well-studied materials, a rare-earth sulfide-based nanocrystal NaCeS2 is fabricated and investigated for efficient and selective conversion of CO2 into CO, where the role of Ce ions is crucial. Firstly, the hybridization of Ce 4f and Ce 5d orbitals contributes to the photoresponsive band structure of NaCeS2 . Secondly, due to the charge rearrangement supplied by the incompletely filled 4f orbitals of Ce ions, NaCeS2 exhibits excellent charge separation efficiency and CO2 adsorption affinity, reducing the energy barrier for the conversion from CO2 to CO. Moreover, a NaCeS2 -MoS2 heterostructure is also designed to further boost the electron transfer from the Mo site to the Ce site, which results in an improvement of the catalytic reduction yield from 7.24 to 23.42 µmol g-1 within 9 h (both better than TiO2 controls). This work offers a platform for the development of rare-earth-based photocatalysts for CO2 conversion.
RESUMO
The development of advanced electronic devices is boosting many aspects of modern technology and industry. The ever-increasing demand for advanced electrical devices and integrated circuits calls for the design of novel materials, with superior properties for the improvement of working performance. In this review, a detailed overview of the synthesis strategies of 2D metal organic frameworks (MOFs) acquiring growing attention is presented, as a basis for expansion of novel key materials in electrical devices and integrated circuits. A framework of controllable synthesis routes to be implanted in the synthesis strategies of 2D materials and MOFs is described. In short, the synthesis methods of 2D MOFs are summarized and discussed in depth followed by the illustrations of promising applications relating to various electrical devices and integrated circuits. It is concluded by outlining how 2D MOFs can be synthesized in a simpler, highly efficient, low-cost, and more environmentally friendly way which can open up their applicable opportunities as key materials in advanced electrical devices and integrated circuits, enabling their use in broad aspects of the society.
Assuntos
Estruturas Metalorgânicas , EletricidadeRESUMO
The 16S rRNA gene sequences of Pseudobizionia ponticola MM-14T and Hanstruepera crassostreae L53T shared 100â% sequence similarity. This study aimed to clarify the taxonomic position of the two species. Whole-genome comparisons showed that P. ponticola MM-14T and H. crassostreae L53T shared average nucleotide identity of 97.52â%, digital DNA-DNA hybridization of 75.30â% and average amino acid identity of 96.98â%. These values exceeded the threshold of bacterial species delineation. Furthermore, average amino acid identities of P. ponticola MM-14T and H. crassostreae L53T in comparison with Hanstruepera neustonica CC-PY-50T were 82.04 and 82.11â%, respectively. Phylogenetic analysis based on 16S rRNA gene and 120 bacterial conserved single-copy genes also supported that P. ponticola MM-14T and H. crassostreae L53T belonged to the genus Hanstruepera. Phenotypic and chemical taxonomic properties compared between P. ponticola MM-14T and H. crassostreae L53T were nearly identical. Colonies of the two species on marine agar plates were orange-pigmented, circular and smooth. Flexirubin-type pigments were present in both H. crassostreae L53T and P. ponticola MM-14T. The major fatty acids composition of the two species consisted of iso-C15â:â1 G, iso-C15â:â0, and iso-C17â:â0 3-OH, similar to H. neustonica CC-PY-50T. Based on priority, H. crassostreae He et al. 2018 is a later heterotypic synonym of P. ponticola Park et al. 2018, and P. ponticola should be transferred to the genus Hanstruepera as Hanstruepera ponticola comb. nov.
Assuntos
Ácidos Graxos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
BACKGROUND: Facial skin characteristics and appearance vary according to ethnicity. While much of this knowledge is derived from the Caucasian population, lately there have been efforts to gain such understanding in various regions in Asia. In this paper, we have built an understanding of such features in Indonesia. In Indonesia, a section of females wears a traditional veil (hijab) to cover the scalp and part of face. The influence of the hijab on facial skin attributes was also investigated. METHODS: In a cross-sectional observational study design involving 419 female volunteers in Jakarta, Indonesia, facial skin attributes (colour, radiance, hydration, trans-epidermal water loss [TEWL], wrinkles, fine lines, pores, and sebum levels) and conditions (melasma, post-inflammatory hyperpigmentation (PIH), solar lentigines/ senile lentigines, seborrheic keratoses and acne) were assessed by trained operators and dermatologists using standard validated instruments and scales. RESULTS: With age, facial skin colour showed darkening in cheek; forehead on the other hand showed slight lightening. The skin evenness and radiance decreased, substantially. Aging attributes measured in terms of lines, wrinkles, and under-eye dark circles showed deterioration with age; the decline was progressively faster than colour change. Facial image data analysis corroborated these findings. Skin hydration remained similar across the age groups even though the skin barrier function measured in terms of TEWL improved with age. Sebum levels in the skin were similar up to the age of 50 but declined in the next group of 50-60 year. Pore severity increased with age. Melasma, seborrheic keratosis and PIH showed a high prevalence (>â¼50%) at the young age group (20-30 years), itself. Melasma prevalence attained 100% in the age group of 41-50 year and onwards, and its severity similarly showed a steady rise with age. PIH on the other hand showed a steady decline with age. Solar lentigines prevalence (â¼30%) did not change much across age groups, and the severity scores were similar in age groups up to 50 year but increased substantially in 51-60-year age groups. Seborrheic keratosis was similar (â¼47%) in age groups up 20-40 year but steadily increased in upper age groups. Its severity was similar in the age groups of 20-30 year and 31-40 year but showed a two-fold increase in subsequent age groups. Acne was 10% in the age group of 20-30 year and declined gradually to 0.7% in the 51-60-year age group. Hijab wearers showed slight protection in skin colour darkening and improvement of evenness and radiance but were similar on aging (fine lines and wrinkles on crow's feet, under eye and peri-oral areas) markers to non-wearers. In general, in majority of age-groups, hijab wearers showed a higher prevalence of melasma, solar/senile lentigines, seborrheic keratosis and PIH.
Assuntos
Acne Vulgar , Hiperpigmentação , Ceratose Seborreica , Lentigo , Melanose , Envelhecimento da Pele , Adulto , Estudos Transversais , Feminino , Humanos , Hiperpigmentação/epidemiologia , Indonésia/epidemiologia , Pessoa de Meia-Idade , Água , Adulto JovemRESUMO
Rare-earth (RE) solid-state halide electrolytes have been extensively studied recently in the field of lithium (Li) ion all-solid-state batteries (ASSBs) due to their excellent electrochemical performances. Herein, a new RE-based solid halide electrolyte Li3HoBr6 (LHB) has been synthesized and exhibits high Li ion conductivity up to mS cm-1 at room temperature. Theoretical calculations have identified four different Li ion migration pathways, in which the out-of-plane pathways are much more favorable than the direct in-plane pathways. In addition, LHB has a wider electrochemical window in comparison to a sulfide solid electrolyte and good deformability. The LHB-based Li-sulfur ASSB assembled by cold pressing can exhibit good cycling stability with high Coulombic efficiency, which shows that LHB has potential application in ASSBs.
RESUMO
OBJECTIVES: To demonstrate the synergistic effect of 4-hexylresorcinol (4-HR) with niacinamide in boosting anti-melanogenic efficacy in vitro and establish the in vivo efficacy and safety of the combination in a human trial. METHODS: Primary human epidermal melanocytes and 3D pigmented skin equivalents were treated with 4-HR, niacinamide, and their combinations for their effect on pigmentation. This was followed by a randomized, double-blind, split-face clinical study in Chinese subjects, and effects on skin tone, hyperpigmentation, fine lines and wrinkles, hydration, and skin firmness were measured for a 12-week study period. RESULTS: In vitro tyrosinase enzyme activity studies showed that 4-HR is one of the most potent tyrosinase inhibitors. The combination of 4-HR and niacinamide showed a synergistic reduction in melanin production in cultured melanocytes and lightened the 3D skin equivalent model. In vitro as well as in the human trial, the combination of 4-HR and niacinamide showed significantly improved efficacy over niacinamide alone on hyperpigmentation spots as measured by L*, the visual appearance of fine lines and wrinkles in crow's feet and perioral area and skin firmness, with no product-related adverse events. CONCLUSIONS: A formulation containing a combination of 4-HR and niacinamide delivered superior skin tone and anti-ageing benefits significantly better than niacinamide alone with no adverse events. This study demonstrates that a product designed to affect multiple pathways of melanogenesis, inflammation, and ageing may provide an additional treatment option, beyond hydroquinone and retinoids, for hyperpigmentation and ageing.
OBJECTIFS: Démontrer l'effet synergique du 4-hexylrésorcinol (4-HR) associé au niacinamide pour stimuler in vitro l'efficacité antimélanogène, et établir l'efficacité et la sécurité d'emploi in vivo de cette association dans un essai chez l'homme. MÉTHODES: Des mélanocytes épidermiques humains primaires et des équivalents cutanés pigmentés en 3D ont été traités avec du 4-HR, du niacinamide et leurs combinaisons pour leur effet sur la pigmentation. Ceci a été suivi d'une étude clinique randomisée, en double aveugle en hémi-visage chez des sujets chinois, et les effets sur le teint, l'hyperpigmentation, les rides et ridules, l'hydratation et la fermeté de la peau ont été mesurés pendant une durée d'étude de 12 semaines. RÉSULTATS: Les études in vitro sur l'activité enzymatique de la tyrosinase ont montré que le 4-HR est l'un des inhibiteurs de la tyrosinase les plus puissants. L'association du 4-HR et du niacinamide a montré une réduction synergique de la production de mélanine dans les mélanocytes de culture et donné de la luminosité au modèle cutané 3D équivalent. Également in vitro avec l'étude chez l'homme, l'association du 4-HR et du niacinamide a fait ressortir une efficacité significativement plus élevée qu'avec le niacinamide seul sur les taches d'hyperpigmentation mesurées par L*, l'aspect visuel des rides et ridules des pattes d'oie et de la zone périorale, et la fermeté de la peau, sans événements indésirables liés au produit. CONCLUSIONS: Une formulation contenant une association de 4-HR et de niacinamide a permis d'obtenir un teint et un effet anti-âge nettement supérieurs à ceux du niacinamide seul, sans événements indésirables. Cette étude démontre qu'un produit conçu pour toucher plusieurs voies de mélanogenèse, d'inflammation et de vieillissement peut constituer une nouvelle option thérapeutique, au-delà de l'hydroquinone et des rétinoïdes, pour l'hyperpigmentation et le vieillissement.
Assuntos
Hexilresorcinol , Hiperpigmentação , Envelhecimento , Hexilresorcinol/uso terapêutico , Humanos , Hiperpigmentação/tratamento farmacológico , Niacinamida/farmacologia , Pigmentação da PeleRESUMO
Ultrathin nanowires (NWs) have always attracted the attention of researchers due to their unique properties, but their facile synthesis is still a great challenge. Herein we developed a general method for the synthesis of rare earth (RE) oxide ultrathin NWs at atmospheric pressure and low temperature (50 °C). The formation mechanism of ultrathin NWs lies in two aspects: thermodynamic advantage of one dimensional (1D) growth at low temperature, and supplement of effective monomers. As an extension, fifteen kinds of RE oxide ultrathin NWs were synthesized through this strategy, and they all exhibited polymer-like behaviors. Meanwhile, the high viscosity, organic gel, wet- and electro-spinning of Ce-Mo-O NWs were studied in detail, demonstrating the similarity of ultrathin inorganic NWs to polymers. In addition, the Ce-Mo-O ultrathin NWs were used as photocatalysts for toluene oxidation and showed excellent performance with toluene conversion ratio of 83.8 %, suggesting their potential application in organic photocatalysis.
RESUMO
The development of catalytic conversion is very important for human society. In the catalytic process, metal-organic frameworks (MOFs) can be utilized to obtain effective catalysts for their porous structures and adjustable properties. In addition, the introduction of rare-earth (RE) elements with unique properties for catalysts can realize good catalytic performances. Thus, the RE-MOF related catalysts for catalytic conversion are summarized. Due to the cooperation of RE elements and porous MOF structures, the RE-based MOFs can be used as promising catalysts or precursors/supports for other catalysts in the areas of energy conversion, environmental governance, and organic synthesis. These aggregated studies highlight the RE-MOFs as promising candidates for catalytic conversion.